Metadata and Data Sets
| Bouldin Alfalfa || Bouldin Corn || DWR Corn || East End || East Pond || Eden Landing || Gilbert Tract || Hill Slough || Mayberry || Rush Ranch || Sherman Barn || Sherman Island || Sherman Wetland || Tonzi || Twitchell Alfalfa || Twitchell Rice || Vaira || West Pond |Summary
| Soils || Water Level || Lidar || Dist & Mgmt || Leaf Level || Spectra || Report || Isotope || Harvest || LAI || Ground Penetrating Radar || Soil Moisture || Tree Survey || Water Potential || Porewater |
Id | Type | Site | Dates | Frequency | Title | Description |
---|---|---|---|---|---|---|
17 | Ground Penetrating Radar | TZ | 2011-05-03 - 2011-05-05 | Once | Ground Penetrating Radar by Naama | Ground Penetrating Radar by Naama. Six tree location were sampled using 8mx8m grids with 20cm line spacing. Two 100cm x 60cm pits were dug to bed rock at 0.5 and 1.5m from each main bole for calibration. For more details see: Raz-Yaseef, N., Koteen, L., Verfaillie, J., Baldocchi, D. (2013) Root system structure of a water limited oak savanna estimated with a ground penetrating radar. Journal of Geophysical Research, Biogeosciences. |
37 | LAI | TZ | 2022-07-19 - 2023-07-25 | Once or twice a year during summer | Optical LAI measured in-situ | 50+ measurements taken each time with a LAI-2200C. Most of the measurements were taken with the 2-wand method, where an "above" wand was set up on a tripod in the open area east of the Tonzi tower and took measurements every 5 sec, and a "below" wand was used to collect data below the tree canopy. The data were processed in the Licor software FV2200, where each "below" measurement was paired with the "above" measurement closest in time; LAI was calculated. Some files were corrected for scattering (based on 4A scattering data); scattering correction usually affected the LAI by <0.05. |
7 | Leaf Level | TZ | 2001-01-01 - 2008-12-31 | Mostly bi-weekly during the summer | Various leaf level measurements | Leaf level measurements from 2001 to 2008 compiled by Jessica Osuna. Measurements include A-Ci, A-RH, A-PAR, water potential, stable isotopes, sap flow, etc. This is mostly Tonzi data but also data from Russel Ranch, Oak Ridge and UMBS. Also includes DBH, grass height, LAI. This entry needs to be updated as this pile of data gets better organized. |
18 | Lidar | TZ | 2003-08-24 | Once | Lidar flight by Airborne1 | On August 24, 2003, laser altimetry data were acquired with Optech ALTM 2025, which recorded both first and last returns for each laser pulse. The scanning pattern was z-shape. The claimed vertical accuracy from the data provider is 18 cm with 95% confidence and the horizontal accuracy is 1/3000 of the flying height. The swath is ca. 300m and the flying altitude is ca. 500m. The footprint size is about 18 cm. The average posting density is 9.5 points per square meter, resulting in an average spot spacing of about 32 cm. To obtain such a high pulse density, the site was flown twice. UTM zone 10, NAD83 / NAVD88, meters, ascii Bald Earth (t e n z i) Extracted Features (t e n z i) 0.50m Grids (e n z) Model Keypoints (e n z) First Pulse all-shots (t e n z i) citation Chen, Q., D. Baldocchi, P. Gong, and M. Kelly (2006), Isolating individual trees in a savanna woodland using small footprint lidar data, Photogrammetric Engineering and Remote Sensing, 72(8), 923-932. |
19 | Lidar | TZ | 2009-04-20 | Once | Lidar flight by Airborne 1 Corporation | The LiDAR data were collected for the study area on April 20, 2009. The sensor recorded the first and last return pulses. The scanning pattern was z-shaped. The scanning angle was 15°, and the flying altitude was about 900 m, corresponding to a swath of about 500 m. The average horizontal GPS solution difference from two base stations was 10–15 cm. The vertical accuracy was −0.01 ± 0.05 m, based on the comparison of 819 test points and interpolated digital elevation model elevations. The footprint size was about 18 cm. The average posting density was 4.1 points per square meter, resulting in an average spot spacing of about 0.5 m. NAD83/NAVD88, UTM Zone 10, meters Last Pulse and First Pulse in LAS and XYZ formats Kobayashi, H.,Baldocchi, D.D., Ryu, Y., Chen, Q., Ma, S, Osuna, J., Ustin, S. 2011. Modeling Energy and Carbon Fluxes in a Heterogeneous Oak Woodland: A Three-Dimensional Approach. Agricultural and Forest Meteorology. 152:83-100 |
20 | Lidar | TZ | 2012-03-21 | Once | Terrestial Lidar by Martin Beland - no leaves | Approximately six locations were scanned resulting in a total of 36 individual scans. Control points are included to tie scans together. The VZ-400 terrestrial LiDAR instrument used at Tonzi emits laser pulses at a wavelength of 1550 nm and can cover 360â—¦azimuthally and from −40â—¦ to +60â—¦ in elevation angle. The instrument has three important features which are not common among other terrestrial LiDAR scanners: (1) it can perform scans rapidly at a speed of 122,000 measurements per second, (2) it offers the possibility of using specially designed targets to make multiple scan co-registration signiï¬cantly more efï¬cient when combined with the RiScan Pro software (Riegl inc., Austria), and (3) the instrument can record full-waveform data (i.e., all pulse echoes are recorded at a small temporal interval) but this comes at a cost in acquisition time. The diameter of the laser pulse when leaving the instrument is7 mm, and the pulse divergence is 0.3 mrad. The trees were scanned from a distance of about 10–12 m. At this distance, the pulse cross section diameter for the Riegl VZ-400 is about 1 cm. The overall plot area was scanned from six different locations. All leaf-off and leaf-on scans were carried out from the same positions using the same angular resolution of about 280 urad. Depending on the coverage area settings used, each scan took between 2 and 6 min to complete. As of 2019-06-05 the data is on the Synology file server in room 107 |
21 | Lidar | TZ | 2012-05-15 | Once | Terrestial Lidar by Martin Beland - leaves on | Approximately six locations were scanned resulting in a total of 36 individual scans. Control points are included to tie scans together. The VZ-400 terrestrial LiDAR instrument used at Tonzi emits laser pulses at a wavelength of 1550 nm and can cover 360â—¦azimuthally and from −40â—¦ to +60â—¦ in elevation angle. The instrument has three important features which are not common among other terrestrial LiDAR scanners: (1) it can perform scans rapidly at a speed of 122,000 measurements per second, (2) it offers the possibility of using specially designed targets to make multiple scan co-registration signiï¬cantly more efï¬cient when combined with the RiScan Pro software (Riegl inc., Austria), and (3) the instrument can record full-waveform data (i.e., all pulse echoes are recorded at a small temporal interval) but this comes at a cost in acquisition time. The diameter of the laser pulse when leaving the instrument is7 mm, and the pulse divergence is 0.3 mrad. The trees were scanned from a distance of about 10–12 m. At this distance, the pulse cross section diameter for the Riegl VZ-400 is about 1 cm. The overall plot area was scanned from six different locations. All leaf-off and leaf-on scans were carried out from the same positions using the same angular resolution of about 280 urad. Depending on the coverage area settings used, each scan took between 2 and 6 min to complete. As of 2019-06-05 the data is on the Synology file server in room 107 |
22 | Soil Moisture | TZ | 2011-05-10 - Present | houly approximately | COSMOS areal soil moisture | Soil moisture from the COSMOS project. The method involves measuring low-energy cosmic-ray neutrons above the ground, whose intensity is inversely correlated with soil water content and with water in any form above ground level (Note: the contributions from subsurface and surface waters are distinguishable). This non-contact technique is capable of measuring average soil water content over a footprint of 34 hectares (a circle with a radius of 330 m) and depths up to 50 cm (10-20cm for Tonzi). Neutron counts in two energy bands (fast, >1 keV; and thermal, <0.5 eV) are measured. |
23 | Soils | TZ | 2011-05-03 - 2012-05-04 | Once | Soil cores for C:N and root samples | Soils and roots were sampled near five trees and two clusters. 16 locations per site were sampled for roots with a 3.2cm corer in 10cm increment profiles to 60cm. 14 locations per site were sampled for C:N with a 3.2cm corer in 10cm increment profiles to 50cm. For more details see: Koteen, L. E., N. Raz-Yaseef, and D. D. Baldocchi (2014), Spatial heterogeneity of fine root biomass and soil carbon in a California oak savanna illuminates plant functional strategy across periods of high and low resource supply, Ecohydrology, doi: 10.1002/eco.1508 |
24 | Soils | TZ, VR | 2019-04-30 - 2019-04-30 | Once | Soil cores for C:N and microbial community | Soil samples were collected to be analyzed for soil moisture, bulk density, C:N, and microbial community. At each sampling location, soil samples were taken with a narrow corer at four depths: 0-10, 10-20, 20-30, 30-40 cm. At Vaira, samples were taken in six locations surrounding the tower site. At Tonzi, samples were taken in twelve locations in open locations and near trees. |
31 | Tree Survey | TZ | 2018-06-06 - 2018-06-08 | Once | Tree Survey By Miriam | The survey was a census of 14 circular plots, pseudo-randomly placed in the approximate eddy covariance tower flux footprint (within 500 m from the tower). Plot placement aimed to sample tree species (Quercus douglasii QUDO, Pinus sabiniana PISA) and sizes that were roughly representative of the entire footprint, according to a 2003 lidar survey (itself deemed insufficiently accurate for initialization). Eleven plots had a radius of 13 m and three had a radius of 20 m, for a total area censused of 9,610 m2. In each plot, we measured trees which were > 1.5 m tall. We recorded: geographical location (Trimble GeoXT 6000 with external antenna and ArcPad software, differentially corrected using base station data to an accuracy of <50 cm [75.07% of data], 0.5 - 1 m [17.71% of data], 1 - 2 m, [6.47 % of data], or 2 - 5 m [0.75% of data]), diameter at breast height (DBH), and height (Nikon Forestry Pro laser rangefinder; 3 point method; reported distance accuracy is ± 1 m at distances shorter than 300 m). |
32 | Tree Survey | TZ | 2018-06-08 | Once | Pines for tree rings cores by Miriam | 20 pines (Pinus sabiniana PISA) were measured and cored as part of Jackie Ho's undergrad thesis. We aimed for large trees but not so large that the borer couldn't get to the center. For relatively straight-standing trees and for trees on slopes (which have growth more likely to reflect water deficit). Locations are from a phone GPS, diameter at breast height (DBH), and height (Nikon Forestry Pro laser rangefinder; 3 point method; reported distance accuracy is ± 1 m at distances shorter than 300 m). |
33 | Tree Survey | TZ | 2019-12-16 | Once | DBH and crown size by Miriam and Ana | Measurements of 20 QUDO & 20 PISA crown diameters (in 2 directions, not necessarily perpendicular) and DBHs. The purpose of data collection was to get a general idea of DBH~crown diameter allometry, but note that these trees were chosen in an ad-hoc manner and were not a random sample. DBH measured with a tape; crown width measured by two people with a tape, looking up to position the ends of the tape appropriately. GPS points from a phone, IDOL alcatel, with the 'GPS coordinates' app. Measurements done 12/16/19. |
34 | Tree Survey | TZ | 2023-04-26 | Multi year | Partial survey of banded trees by Sophie and Megan | Sophie Ruehr and Megan Hur, 93 of the banded tress were measured and photographed, band increment and circumference. |
36 | Water Potential | TZ | 2001-03-01 - Present | Bi-weekly during green leaf season | Oak tree leaf water potential | Leaf water potential using a pressure bomb to force water out of sprigs of oak leaves (some pine too) have been measured by many different people over the years. Generally three trees have been used (102, 255 and 92 aka Liu Kang's tree) although some times the tree ids were not recorded (2010, 2011, 2012). Also young and old pine trees but again not always recorded. Usually small sprigs of multiple oak leave were cut from the tree in multiple (sunlit, shade, different height) locations and immediately measured. Midday is the most prevalent measurement time, but many predawn measurements were done, and occasionally multiple times throughout the day. Sometimes only qualitative times of "predawn" and "midday" were recorded these were assumed to be 30min before sunrise and solar noon. |