Skip to main content
 
 
 
   
     

Classics

Agriculture and Climate

1. Lobell, D.B., Schlenker, W. and Costa-Roberts, J., 2011. Climate trends and global crop production since 1980. Science, 333(6042): 616-20.

2. Lobell, D.B. and Gourdji, S.M., 2012. The influence of climate change on global crop productivity. Plant Physiology, 160(4): 1686-97.

3. Foley, J.A. et al., 2011. Solutions for a cultivated planet. Nature, 478(7369): 337-42.

4. Rosenzweig, C. and Parry, M.L., 1994. POTENTIAL IMPACT OF CLIMATE-CHANGE ON WORLD FOOD-SUPPLY. Nature, 367(6459): 133-138.

5. Rigden, A. J., N. D. Mueller, N. M. Holbrook, N. Pillai, and P. Huybers (2020), Combined influence of soil moisture and atmospheric evaporative demand is important for accurately predicting US maize yields, Nature Food, 1(2), 127-133, doi:10.1038/s43016-020-0028-7.

Biogeochemistry

1. Bolin, B. and H. Rodhe. 1973. Note on Concepts of Age Distribution and Transit-Time in Natural Reservoirs. Tellus 25:58-62.

2. Megonigal, J. P., et al. (2003). Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes. Treatise on Geochemistry. H. D. Holland and K. K. Turekian. Oxford, Pergamon. 8: 317-424.

3. Burgin, A. J., and T. D. Loecke (2023), The biogeochemical redox paradox: how can we make a foundational concept more predictive of biogeochemical state changes?, Biogeochemistry, doi:10.1007/s10533-023-01036-9.
DOI: 10.1007/s10533-023-01036-9

Biogeosciences

1. Neubauer, S. and J. P. Megonigal (2015). "Moving Beyond Global Warming Potentials to Quantify the Climatic Role of Ecosystems." Ecosystems 18(6): 1000-1013.

2. Kleidon, A. (2023), Working at the limit: a review of thermodynamics and optimality of the Earth system, Earth Syst. Dynam., 14(4), 861-896, doi:10.5194/esd-14-861-2023.
DOI: 10.5194/esd-14-861-2023

Boundary Layer Micrometeorology

1. Kaimal, J. C., Y. Izumi, J. C. Wyngaard, and R. Cote. 1972. Spectral Characteristics of Surface-Layer Turbulence. Quarterly Journal of the Royal Meteorological Society 98:563-&.

2. Hogstrom, U. 1988. Non-Dimensional Wind and Temperature Profiles in the Atmospheric Surface-Layer - a Re-Evaluation. Boundary-Layer Meteorology 42:55-78.

3. Kaimal, J. C. and J. C. Wyngaard. 1990. The Kansas and Minnesota Experiments. Boundary-Layer Meteorology 50:31-47.

4. Wyngaard, J.C., 1992. Atmospheric-Turbulence. Annual Review of Fluid Mechanics, 24: 205-233.

5. Hogstrom, U. 1996. Review of some basic characteristics of the atmospheric surface layer. Boundary-Layer Meteorology 78:215-246.

6. Foken, T., 2006. 50 Years of the Monin–Obukhov Similarity Theory. Boundary-Layer Meteorology, 119(3): 431-447.

7. Wyngaard, J. C. 1990. Scalar Fluxes in the Planetary Boundary-Layer - Theory, Modeling, and Measurement. Boundary-Layer Meteorology 50:49-75.

Canopy Conductance

1. Finnigan, J. J. and M. R. Raupach. 1987. Transfer processes in plant canopies in relation to stomatal characteristics. Pages 385-429 in E. Zeiger, editor. Stomatal Function. Stanford University Press, Palo Alto, CA.

2. Raupach, M.R., 1995. Vegetation-atmosphere interaction and surface conductance at leaf, canopy and regional scales. Agricultural and Forest Meteorology, 73(3-4): 151-179.

3. Kelliher, F.M., Leuning, R., Raupach, M.R. and Schulze, E.-D., 1995. Maximum conductances for evaporation from global vegetation types. Agricultural and Forest Meteorology, 73(1-2): 1-16.

Canopy micrometeorology and turbulence

1. Denmead, O. T. and E. F. Bradley. 1987. On Scalar Transport in Plant Canopies. Irrigation Science 8:131-149.

2. Finnigan, J., 2000. Turbulence in Plant Canopies. Annu. Rev. Fluid Mech., 32(1): 519-571.

3. Raupach, M.R. and Thom, A.S., 1981. Turbulence in and above Plant Canopies. Annual Review of Fluid Mechanics, 13: 97-129.

4. Raupach, M. R., J. J. Finnigan, and Y. Brunet. 1996. Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy. Boundary-Layer Meteorology 78:351-382.

5. Brunet, Yves. 2020. 'Turbulent Flow in Plant Canopies: Historical Perspective and Overview', Boundary-Layer Meteorology, 177: 315-64.

CO2 Fluxes, Pioneering Studies

1. Monteith, J. L. and G. Szeicz. 1960. The Carbon-Dioxide Flux over a Field of Sugar Beet. Quarterly Journal of the Royal Meteorological Society 86:205-214.

2. Desjardins, R. 1974. Technique to Measure Co2 Exchange under Field Conditions. International Journal of Biometeorology 18:76-83.

3. Anderson, D. E., S. B. Verma, and N. J. Rosenberg. 1984. Eddy-correlation measurements of CO2, latent-heat, and sensible heat fluxes over a crop surface. Boundary-Layer Meteorology 29:263-272.

CO2 Fluxes, syntheses

1. Baldocchi, D.D., 2008. TURNER REVIEW No. 15. 'Breathing' of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Australian Journal of Botany 56, 1-26.

2. Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rodenbeck, C., Arain, M.A., Baldocchi, D., Bonan, G.B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K.W., Roupsard, O., Veenendaal, E., Viovy, N., Williams, C., Woodward, F.I., Papale, D., 2010. Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science 329, 834-838.

3. Luyssaert, S., Inglima, I., Jung, M., Richardson, A.D., Reichsteins, M., Papale, D., Piao, S.L., Schulzes, E.D., Wingate, L., Matteucci, G., Aragao, L., Aubinet, M., Beers, C., Bernhoffer, C., Black, K.G., Bonal, D., Bonnefond, J.M., Chambers, J., Ciais, P., Cook, B., Davis, K.J., Dolman, A.J., Gielen, B., Goulden, M., Grace, J., Granier, A., Grelle, A., Griffis, T., Grunwald, T., Guidolotti, G., Hanson, P.J., Harding, R., Hollinger, D.Y., Hutyra, L.R., Kolar, P., Kruijt, B., Kutsch, W., Lagergren, F., Laurila, T., Law, B.E., Le Maire, G., Lindroth, A., Loustau, D., Malhi, Y., Mateus, J., Migliavacca, M., Misson, L., Montagnani, L., Moncrieff, J., Moors, E., Munger, J.W., Nikinmaa, E., Ollinger, S.V., Pita, G., Rebmann, C., Roupsard, O., Saigusa, N., Sanz, M.J., Seufert, G., Sierra, C., Smith, M.L., Tang, J., Valentini, R., Vesala, T., Janssens, I.A., 2007. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology 13, 2509-2537.

Dry Deposition

1. Wesely, M. L. and B. B. Hicks. 2000. A review of the current status of knowledge on dry deposition. Atmospheric Environment 34:2261-2282.

2. Wesely, M. L. 1989. PARAMETERIZATION OF SURFACE RESISTANCES TO GASEOUS DRY DEPOSITION IN REGIONAL-SCALE NUMERICAL-MODELS. Atmospheric Environment 23:1293-1304.

3. Wesely, M. L. and B. B. Hicks. 2000. A review of the current status of knowledge on dry deposition. Atmospheric Environment 34:2261-2282.

4. Fowler, D., K. Pilegaard, M. A. Sutton, P. Ambus, M. Raivonen, J. Duyzer, D. Simpson, H. Fagerli, S. Fuzzi, J. K. Schjoerring, C. Granier, A. Neftel, I. S. A. Isaksen, P. Laj, M. Maione, P. S. Monks, J. Burkhardt, U. Daemmgen, J. Neirynck, E. Personne, R. Wichink-Kruit, K. Butterbach-Bahl, C. Flechard, J. P. Tuovinen, M. Coyle, G. Gerosa, B. Loubet, N. Altimir, L. Gruenhage, C. Ammann, S. Cieslik, E. Paoletti, T. N. Mikkelsen, H. Ro-Poulsen, P. Cellier, J. N. Cape, L. Horváth, F. Loreto, Ü. Niinemets, P. I. Palmer, J. Rinne, P. Misztal, E. Nemitz, D. Nilsson, S. Pryor, M. W. Gallagher, T. Vesala, U. Skiba, N. Brüggemann, S. Zechmeister-Boltenstern, J. Williams, C. O'Dowd, M. C. Facchini, G. de Leeuw, A. Flossman, N. Chaumerliac, and J. W. Erisman. 2009. Atmospheric composition change: Ecosystems–Atmosphere interactions. Atmospheric Environment 43:5193-5267.

5. Clifton, O. E., et al. (2020), Dry Deposition of Ozone Over Land: Processes, Measurement, and Modeling, Rev. Geophys., 58(1), e2019RG000670, doi:10.1029/2019rg000670.

6. Farmer, Delphine K., Erin K. Boedicker, and Holly M. DeBolt. 2021. 'Dry Deposition of Atmospheric Aerosols: Approaches, Observations, and Mechanisms', Annual Review of Physical Chemistry, 72: null.

Ecophysiology

1. Pearcy, R. W. and J. Ehleringer. 1984. Comparative Ecophysiology of C-3 and C-4 Plants. Plant Cell and Environment 7:1-13.

2. Berry, J. and O. Bjorkman. 1980. PHOTOSYNTHETIC RESPONSE AND ADAPTATION TO TEMPERATURE IN HIGHER-PLANTS. Annual Review of Plant Physiology and Plant Molecular Biology 31:491-543.

3. Field, C. B. and H. A. Mooney. 1986. The photosynthesis-nitrogen relationship in wild plants. Pages 25-55 in T. J. Givnish, editor. On the economy of plant form and function. Cambridge University Press.

Ecosystem Atmosphere Interactions

1. Watson, A. and J. Lovelock. 1983. Biological homeostasis of the global environment: the parable of Daisyworld. Tellus 35b:286-289.

2. Odum, E. P. 1969. Strategy of Ecosystem Development. Science 164:262-270.

3. Kleidon, A. (2023), Working at the limit: a review of thermodynamics and optimality of the Earth system, Earth Syst. Dynam., 14(4), 861-896, doi:10.5194/esd-14-861-2023.
DOI: 10.5194/esd-14-861-2023

Ecosystem Structure and Function

7. Van Bodegom, P. M., J. C. Douma, J. P. M. Witte, J. C. Ordoñez, R. P. Bartholomeus, and R. Aerts. 2012. Going beyond limitations of plant functional types when predicting global ecosystem-atmosphere fluxes: exploring the merits of traits-based approaches. Global Ecology and Biogeography 21:625-636.

8. Reich, P. B., M. B. Walters, and D. S. Ellsworth. 1997. From tropics to tundra: Global convergence in plant functioning. PNAS 94:13730-13734.

9. Wright, I. J., P. B. Reich, M. Westoby, D. D. Ackerly, Z. Baruch, F. Bongers, J. Cavender-Bares, F. A. Chapin, J. H. C. Cornelissen, M. Diemer, J. Flexas, E. Garnier, P. K. Groom, J. Gulias, K. Hikosaka, B. B. Lamont, T. Lee, W. Lee, C. Lusk, J. J. Midgley, M.-L. Nava, Ü. Niinemets, J. Oleksyn, N. Osada, H. Poorter, P. Poot, L. Prior, V. I. Pyankov, C. Roumet, S. C. Thomas, M. G. Tjoelker, E. J. Veneklaas, and R. Villar. 2004. The worldwide leaf economics spectrum. Nature 428:821-827.

Eddy Covariance Flux measurements

1. Moore, C. J. 1986. Frequency response corrections for eddy covariance systems. Boundary Layer Meteorology 37:17-35.

2. McMillen, R. T. 1988. An Eddy-Correlation Technique with Extended Applicability to Non-Simple Terrain. Boundary-Layer Meteorology 43:231-245.

3. Baldocchi, D. D., B. B. Hicks, and T. P. Meyers. 1988. Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology. 69:1331-1340.

4. Foken, T. and B. Wichura. 1996. Tools for quality assessment of surface-based flux measurements. Agricultural and Forest Meteorology 78:83-105.

5. Aubinet, M. et al., 2000. Estimates of the annual net carbon and water exchange of Europeran forests: the EUROFLUX methodology. Advances in Ecological Research, 30: 113-175.

6. Baldocchi, D.D., 2003. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems:past, present and future. Global Change Biol, 9: 479-492.

7. Lee, X.H., Massman, W.J., 2011. A Perspective on Thirty Years of the Webb, Pearman and Leuning Density Corrections. Boundary-Layer Meteorology 139, 37-59.

8. Sabbatini, S., et al. (2018), Eddy covariance raw data processing for CO2 and energy fluxes calculation at ICOS ecosystem stations, International Agrophysics, 32(4), 495-+, doi:10.1515/intag-2017-0043.

Energetics of crop production

1. Monteith, J. L. 1977. Climate and Efficiency of Crop Production in Britain. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 281:277-294.

2. Loomis, R. S. 1971. Agricultural Productivity. Annual Review of Plant Physiology 22:431-&.

3. Lemon, E., D. W. Stewart, and Shawcroft, R.W.. 1971. SUNS WORK IN A CORNFIELD. Science 174:371-&.

4. Zelitch, Israel. "The close relationship between net photosynthesis and crop yield." Bioscience 32.10 (1982): 796-802.

5. Gifford, Roger M., and L. T. Evans. "Photosynthesis, carbon partitioning, and yield." Annual Review of Plant Physiology 32.1 (1981): 485-509.

Energy Balance Closure

1. Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier, P., Bernhofer, C., Ceulemans, R., Dolman, H., Field, C., 2002. Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology 113, 223-243.

2. Foken, T. 2008. The energy balance closure problem: An overview. Ecological Applications 18:1351-1367.

3. Leuning, R., van Gorsel, E., Massman, W.J., Isaac, P.R., 2012. Reflections on the surface energy imbalance problem. Agricultural and Forest Meteorology 156, 65-74.

4. Stoy, P. C., et al. (2013), A data-driven analysis of energy balance closure across FLUXNET research sites: The role of landscape scale heterogeneity, Agricultural and Forest Meteorology, 171-172, 137-152, doi:10.1016/j.agrformet.2012.11.004.

5. Mauder, Matthias, Thomas Foken, and Joan Cuxart. 2020. 'Surface-Energy-Balance Closure over Land: A Review', Boundary-Layer Meteorology, 177: 395-426.

Evaporation

1. Monteith, J. L. 1965. Evaporation and Environment. Pages 205-234 Symposium Society of Experimental Biology XIX.

2. Monteith, J. L. 1981. Evaporation and Surface-Temperature. Quarterly Journal of the Royal Meteorological Society 107:1-27.

3. Jarvis, P.G. and McNaughton, K.G., 1986. Stomatal Control of Transpiration - Scaling up from Leaf to Region. Advances in Ecological Research, 15: 1-49.

4. Raupach, M.R., 2001. Combination theory and equilibrium evaporation. Quarterly Journal of the Royal Meteorological Society, 127(574): 1149-1181.

5. Shuttleworth, W.J., 2007. Putting the 'vap' into evaporation. Hydrology and Earth System Sciences 11, 210-244.

6. Katul, G. G., R. Oren, S. Manzoni, C. Higgins, and M. B. Parlange. 2012. Evapotranspiration: A process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system. Reviews of Geophysics 50.

7. Rigden, A. J., and G. D. Salvucci. 2015. 'Evapotranspiration based on equilibrated relative humidity (ETRHEQ): Evaluation over the continental US', Water Resources Research, 51: 2951-73.

8. Stoy, P. C., T. S. El-Madany, J. B. Fisher, P. Gentine, T. Gerken, S. P. Good, A. Klosterhalfen, S. Liu, D. G. Miralles, O. Perez-Priego, A. J. Rigden, T. H. Skaggs, G. Wohlfahrt, R. G. Anderson, A. M. J. Coenders-Gerrits, M. Jung, W. H. Maes, I. Mammarella, M. Mauder, M. Migliavacca, J. A. Nelson, R. Poyatos, M. Reichstein, R. L. Scott, and S. Wolf. 2019. 'Reviews and syntheses: Turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities', Biogeosciences, 16: 3747-75.
DOI: 10.5194/bg-2019-85

Flux Footprint

1. Schmid, H. P. 2002. Footprint modeling for vegetation atmosphere exchange studies: a review and perspective. Agricultural and Forest Meteorology 113:159-183.

2. Vesala, T., U. Rannik, M. Leclerc, T. Foken, and K. Sabelfeld. 2004. Flux and concentration footprints. Agricultural and Forest Meteorology 127:111-116.

3. Hsieh, C. I. and G. Katul. 2009. The Lagrangian stochastic model for estimating footprint and water vapor fluxes over inhomogeneous surfaces. International Journal of Biometeorology 53:87-100.

4. Kljun, N., P. Calanca, M. W. Rotach, and H. P. Schmid (2015), A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP), Geosci. Model Dev., 8(11), 3695-3713, doi:10.5194/gmd-8-3695-2015.

Flux Processing, Partitioning and Gap filling

1. Falge, E., D. Baldocchi, R. Olson, P. Anthoni, M. Aubinet, C. Bernhofer, G. Burba, R. Ceulemans, R. Clement, and H. Dolman. 2001. Gap filling strategies for long term energy flux data sets. Agricultural and Forest Meteorology 107:71-77.

2. Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Grunwald, T., Havrankova, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T., Miglietta, F., Ourcival, J.-M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., Valentini, R., 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11, 1424-1429.

3. Moffat, A.M., Papale, D., Reichstein, M., Hollinger, D.Y., Richardson, A.D., Barr, A.G., Beckstein, C., Braswell, B.H., Churkina, G., Desai, A.R., Falge, E., Gove, J.H., Heimann, M., Hui, D., Jarvis, A.J., Kattge, J., Noormets, A., Stauch, V.J., 2007. Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agricultural and Forest Meteorology 147, 209-232.

Global Change and Ecosystems

5. Ainsworth, E. A., and S. P. Long (2005), What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2, New Phytol, 165(2), 351-371, doi:10.1111/j.1469-8137.2004.01224.x.

6. Norby, R. J., and D. R. Zak (2011), Ecological Lessons from Free-Air CO2Enrichment (FACE) Experiments, Annual Review of Ecology, Evolution, and Systematics, 42(1), 181-203, doi:10.1146/annurev-ecolsys-102209-144647.

7. Sage, R. F. (2020), Global Change Biology: A Primer, Global Change Biology, n/a(n/a), doi:10.1111/gcb.14893.

Gross Primary Production from Remote Sensing, Regional and Global Upscaling

1. Running, S. W., D. D. Baldocchi, D. Turner, S. T. Gower, P. Bakwin, and K. Hibbard (1999), A global terrestrial monitoring network, scaling tower fluxes with ecosystem modeling and EOS satellite data, Remote Sensing of the Environment., 70, 108-127.

2. Anav, A., P. Friedlingstein, C. Beer, P. Ciais, A. Harper, C. Jones, G. Murray-Tortarolo, D. Papale, N. C. Parazoo, P. Peylin, S. Piao, S. Sitch, N. Viovy, A. Wiltshire, and M. Zhao. 2015. Spatiotemporal patterns of terrestrial gross primary production: A review. Reviews of Geophysics: doi 10.1002/2015RG000483.

3. Xiao, X., C. Jin, and J. Dong. 2014. Gross Primary Production of Terrestrial Vegetation. Pages 127-148 in J. M. Hanes, editor. Biophysical Applications of Satellite Remote Sensing. Springer Berlin Heidelberg.

4. Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rodenbeck, C., Arain, M.A., Baldocchi, D., Bonan, G.B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K.W., Roupsard, O., Veenendaal, E., Viovy, N., Williams, C., Woodward, F.I., Papale, D., 2010. Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science 329, 834-838.

5. Jung, M., et al. (2011), Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations, Journal of Geophysical Research, 116, doi:10.1029/2010jg001566.

6. Xiao, Jingfeng, Frederic Chevallier, Cecile Gomez, Luis Guanter, Jeffrey A. Hicke, Alfredo R. Huete, Kazuhito Ichii, Wenjian Ni, Yong Pang, Abdullah F. Rahman, Guoqing Sun, Wenping Yuan, Li Zhang, and Xiaoyang Zhang. 2019. 'Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years', Remote Sensing of Environment, 233: 111383.

Hyperspectral remote sensing and surface Fluxes

1. Gamon, J. A., et al. (2011), SpecNet revisited: bridging flux and remote sensing communities, Canadian Journal of Remote Sensing, 36, S376-S390.

2. Ustin, S. L., D. A. Roberts, J. A. Gamon, G. P. Asner, and R. O. Green. 2004. Using imaging spectroscopy to study ecosystem processes and properties. Bioscience 54:523-534.

3. Porcar-Castell, A., E. Tyystjarvi, J. Atherton, C. van der Tol, J. Flexas, E. E. Pfundel, J. Moreno, C. Frankenberg, and J. A. Berry. 2014. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. Journal of Experimental Botany 65:4065-4095.

4. Badgley, G., L. D. L. Anderegg, J. A. Berry, and C. B. Field (2019), Terrestrial Gross Primary Production: Using NIRV to Scale from Site to Globe, Global Change Biology, 0(ja), doi:10.1111/gcb.14729.

5. Ustin, Susan L., and Elizabeth M. Middleton. 2021. 'Current and near-term advances in Earth observation for ecological applications', Ecological Processes, 10: 1.

6. Ustin, S. L., and E. M. Middleton (2021), Current and near-term advances in Earth observation for ecological applications, Ecological Processes, 10(1), 1, doi:10.1186/s13717-020-00255-4.
DOI: 10.1186/s13717-020-00255-4

Instruments

1. Wyngaard, J. C. 1981. Cup, Propeller, Vane, and Sonic Anemometers in Turbulence Research. Annual Review of Fluid Mechanics 13:399-423.

2. Werle, P., F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker. 2002. Near- and mid-infrared laser-optical sensors for gas analysis. Optics and Lasers in Engineering 37:101-114.

3. Long, S. P., P. K. Farage, and R. L. Garcia. 1996. Measurement of leaf and canopy photosynthetic CO2 exchange in the field. Journal of Experimental Botany 47:1629-1642.

Land-Atmosphere-Climate Interactions

1. Dickinson, R. E. 1983. Land surface processes and climate-surface albedos and energy balance. Advances in Geophysics 25:305-353.

2. Sellers, P.J. et al., 1997. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science, 275(5299): 502-509.

3. Bonan, G. B., K. W. Oleson, M. Vertenstein, S. Levis, X. B. Zeng, Y. J. Dai, R. E. Dickinson, and Z. L. Yang. 2002. The land surface climatology of the community land model coupled to the NCAR community climate model. Journal of Climate 15:3123-3149.

4. Bonan, G. B. 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444-1449.

5. Jackson, R. B., et al. (2008). "Protecting climate with forests." Environmental Research Letters 3(4): 044006.

6. Foley, J. A., R. DeFries, G. P. Asner, C. Barford, G. Bonan, S. R. Carpenter, F. S. Chapin, M. T. Coe, G. C. Daily, H. K. Gibbs, J. H. Helkowski, T. Holloway, E. A. Howard, C. J. Kucharik, C. Monfreda, J. A. Patz, I. C. Prentice, N. Ramankutty, and P. K. Snyder. 2005. Global consequences of land use. Science 309:570-574.

7. Fisher, Rosie A., and Charles D. Koven. 2020. 'Perspectives on the Future of Land Surface Models and the Challenges of Representing Complex Terrestrial Systems', Journal of Advances in Modeling Earth Systems, 12: e2018MS001453.

Leaf Area Index and Canopy Structure

1. Wilson, J. W. 1965. Stand Structure and Light Penetration. I. Analysis by Point Quadrats. Journal of Applied Ecology 2:383-390.

2. Lang, A. R. G. 1987. Simplified estimate of leaf area index from transmittance of the sun's beam. Agricultural and Forest Meteorology 41:179-186.

3. Chen, J.M., 1996. Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands. Agricultural and Forest Meteorology, 80(2-4): 135-163.

4. Lefsky, M. A., W. B. Cohen, G. Parker, and D. J. Harding. 2002. Lidar remote sensing for ecosystem studies. Bioscience 52:19-30.

5. Jonckheere, I. et al., 2004. Review of methods for in situ leaf area index determination: Part I. Theories, sensors and hemispherical photography. Agricultural and Forest Meteorology, 121(1-2): 19-35.

6. Ryu, Y., Sonnentag, O., Nilson, T., Vargas, R., Kobayashi, H., Wenk, R., Baldocchi, D.D., 2010. How to quantify tree leaf area index in an open savanna ecosystem: A multi-instrument and multi-model approach. Agricultural and Forest Meteorology 150, 63-76.

7. Yan, G., et al. (2019). "Review of indirect optical measurements of leaf area index: Recent advances, challenges, and perspectives." Agricultural and Forest Meteorology 265: 390-411.

Leaf Boundary Layers

1. Leuning, R. 1983. Transport of Gases into Leaves. Plant Cell and Environment 6:181-194

2. Schuepp, P., 1993. Tansley Review No. 59. Leaf Boundary Layers. New Phytologist 125, 477-507.

Leaf Energy Balance

1. Paw U, K. T. and W. Gao. 1988. Applications of solutions to non-linear energy budget equations. Agricultural and Forest Meteorology 43:121-145.

2. Leuning, R. 1989. Leaf Energy Balances - Developments and Applications. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 324:191-206.

3. Gates, David M. "Transpiration and leaf temperature." Annual Review of Plant Physiology 19.1 (1968): 211-238.

4. Blonder, Benjamin, and Sean T. Michaletz. 2018. 'A model for leaf temperature decoupling from air temperature', Agricultural and Forest Meteorology, 262: 354-60.

Leaf photosynthesis/transpiration/stomatal conductance models

1. Jarvis, P. G. 1976. Interpretation of Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in Field. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 273:593-610.

2. Farquhar, G. D., S. V. Caemmerer, and J. A. Berry. 1980. A Biochemical-Model of Photosynthetic Co2 Assimilation in Leaves of C-3 Species. Planta 149:78-90.

3. Farquhar, G.D. and Sharkey, T.D., 1982. Stomatal Conductance and Photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 33: 317-345.

4. Collatz, G.J., Ball, J.T., Grivet, C. and Berry, J.A., 1991. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agricultural and Forest Meteorology, 54(2-4): 107-136.

5. Leuning, R., 1995. A Critical-Appraisal of a Combined Stomatal-Photosynthesis Model for C-3 Plants. Plant Cell and Environment, 18(4): 339-355.

6. Medlyn, B.E., Robinson, A.P., Clement, R. and McMurtrie, R.E., 2005. On the validation of models of forest CO2 exchange using eddy covariance data: some perils and pitfalls. Tree Physiology, 25(7): 839-857.

7. Medlyn, B. E., A. P. Robinson, R. Clement, and R. E. McMurtrie (2005), On the validation of models of forest CO2 exchange using eddy covariance data: some perils and pitfalls, Tree Physiol., 25(7), 839-857.

8. Busch, F. A., et al. A guide to photosynthetic gas exchange measurements: Fundamental principles, best practice and potential pitfalls, Plant, Cell & Environment, n/a(n/a), doi:https://doi.org/10.1111/pce.14815.
DOI: 10.1111/pce.14815

Leaf-Canopy Modeling, Carbon, Water and Heat Fluxes and Microclimate

1. DeWit, C. T. 1965. Photosynthesis of leaf canopies. Centre for Agricultural Publications and Documentation.

2. Duncan, W. G., R. S. Loomis, W. A. Williams, and R. Hanau. 1967. A Model for Simulating Photosynthesis in Plant Communities. Hilgardia 38:181-&.

3. Sinclair, T. R., C. E. Murphy, and K. R. Knoerr. 1976. Development and Evaluation of Simplified Models for Simulating Canopy Photosynthesis and Transpiration. Journal of Applied Ecology 13:813-829.

4. Goudriaan, J. 1977. Crop micrometeorology: a simulation study.

5. Norman, J.M., 1979. Modeling the complete crop canopy. In: B.J. Barfield and J.F. Gerber (Editor), Modification of the aerial environment of plants. , American Society of Agricultural Engineering, St. Joseph, MI, pp. 249

6. Raupach, M.R. and Finnigan, J.J., 1988. Single-Layer Models of Evaporation from Plant Canopies Are Incorrect but Useful, Whereas Multilayer Models Are Correct but Useless - Discuss. Australian Journal of Plant Physiology, 15(6): 705-716.

7. Baldocchi, D. D. and P. C. Harley. 1995. Scaling carbon dioxide and water vapor exchange from leaf to canopy in a deciduous forest: model testing and application. Plant, Cell and Environment 8:1157-1173.

8. dePury, D. G. G. and G. D. Farquhar. 1997. Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell and Environment 20:537-557.

9. Amthor, J. S. 1994. Scaling Co2-Photosynthesis Relationships from the Leaf to the Canopy. Photosynthesis research 39:321-350.

Machine Learning and Fluxes

5. Reichstein, Markus, Gustau Camps-Valls, Bjorn Stevens, Martin Jung, Joachim Denzler, Nuno Carvalhais, and Prabhat. 2019. 'Deep learning and process understanding for data-driven Earth system science', Nature, 566: 195-204.

Methane

1. Cicerone, R.J. and Oremland, R.S., 1988. Biogeochemical aspects of atmospheric methane. Global Biogeochem. Cycles, 2: 299-327.

2. Conrad, R., 1989. Control of methane production in terrestrial ecosystems. In: M.O. Andreae and D.S. Schimel (Editors), Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere. Wiley, Chichester, UK, pp. 39-58.

3. Conrad, R., 1996. Soil microorganisms as controllers of atmospheric trace gases (H-2, CO, CH4, OCS, N2O, and NO). Microbiological Reviews, 60(4): 609-+.

4. Whalen, S.C., 2005. Biogeochemistry of Methane Exchange between Natural Wetlands and the Atmosphere. Environmental Engineering Science, 22(1): 73-94.

5. Bridgham, S. D., H. Cadillo-Quiroz, J. K. Keller, and Q. L. Zhuang. 2013. Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Global Change Biology 19:1325-1346.

6. McCalley, Carmody K., Ben J. Woodcroft, Suzanne B. Hodgkins, Richard A. Wehr, Eun-Hae Kim, Rhiannon Mondav, Patrick M. Crill, Jeffrey P. Chanton, Virginia I. Rich, Gene W. Tyson, and Scott R. Saleska. 2014. 'Methane dynamics regulated by microbial community response to permafrost thaw', Nature, 514: 478-81.

7. Vroom, R. J. E., M. van den Berg, S. R. Pangala, O. E. van der Scheer, and B. K. Sorrell (2022), Physiological processes affecting methane transport by wetland vegetation - a review, Aquatic Botany, 103547, doi:https://doi.org/10.1016/j.aquabot.2022.103547.
DOI: 10.1016/j.aquabot.2022.103547

8. Nisbet, E. G., Manning, M. R., Dlugokencky, E. J., Michel, S. E., Lan, X., Röckmann, T., et al. (2023). Atmospheric methane: Comparison between methane's record in 2006–2022 and during glacial terminations. Global Biogeochemical Cycles, 37, e2023GB007875. https://doi.org/10.1029/2023GB007875
DOI: 10.1029/2023GB007875

Phenology

1. Richardson, A. D., T. F. Keenan, M. Migliavacca, Y. Ryu, O. Sonnentag, and M. Toomey. 2013. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology 169:156-173.

2. Kramer, K., I. Leinonen, and D. Loustau. 2000. The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean ecosystems, an overview. International Journal of Biometeorology 44:67-75.

3. Menzel, A., T. H. Sparks, N. Estrella, E. Koch, A. Aasa, R. Ahas, K. Alm-KÜBler, P. Bissolli, O. G. BraslavskÁ, A. Briede, F. M. Chmielewski, Z. Crepinsek, Y. Curnel, Å. Dahl, C. Defila, A. Donnelly, Y. Filella, K. Jatczak, F. MÅGe, A. Mestre, Ø. Nordli, J. PeÑUelas, P. Pirinen, V. RemiŠOvÁ, H. Scheifinger, M. Striz, A. Susnik, A. J. H. Van Vliet, F.-E. Wielgolaski, S. Zach, and A. N. A. Zust. 2006. European phenological response to climate change matches the warming pattern. Global Change Biology 12:1969-1976.

Planetary Boundary Layer and Surface Flux Feedbacks

1. McNaughton, K.G. and Spriggs, T.W., 1986. A Mixed-Layer Model for Regional Evaporation. Boundary-Layer Meteorology, 34(3): 243-262.

2. Raupach, M.R., 1998. Influences of local feedbacks on land-air exchanges of energy and carbon. Global Change Biology, 4(5): 477-494.

3. Juang, J.-Y., G. Katul, M. Siqueira, P. Stoy, and K. Novick. 2007. Separating the effects of albedo from eco-physiological changes on surface temperature along a successional chronosequence in the southeastern United States. Geophysical Research Letters 34.

4. van Heerwaarden, C. C., J. Vilà-Guerau de Arellano, A. F. Moene, and A. A. M. Holtslag. 2009. Interactions between dry-air entrainment, surface evaporation and convective boundary-layer development. Quarterly Journal of the Royal Meteorological Society 135:1277-1291.

5. Juang, J. Y., G. G. Katul, A. Porporato, P. C. Stoy, M. S. Siqueira, M. Detto, H. S. Kim, and R. Oren. 2007. Eco-hydrological controls on summertime convective rainfall triggers. Global Change Biology 13:887-896.

6. Juang, J. Y., G. G. Katul, A. Porporato, P. C. Stoy, M. S. Siqueira, M. Detto, H. S. Kim, and R. Oren. 2007. Eco-hydrological controls on summertime convective rainfall triggers. Global Change Biology 13:887-896.

Radiative Transfer in vegetation (Phytoactinometry)

1. Lemeur, R. and Blad, B.L., 1974. A critical review of light models for estimating the shortwave radiation regime of plant canopies. Agricultural Meteorology, 14(1-2): 255-286.

2. Ross, J., 1976. Radiative Transfer in Plant Communities. In: J.L. Monteith (Editor), Vegetation and the Atmosphere, vol 1. Academic Press, London.

3. Ross, J. 1980. The Radiation Regime and Architecture of Plant Stands. Dr. W Junk, The Hague. http://link.springer.com/book/10.1007%2F978-94-009-8647-3

4. Myneni, R.B., Ross, J. and Asrar, G., 1989. A review on the theory of photon transport in leaf canopies. Agricultural and Forest Meteorology, 45(1-2): 1-153.

5. Ustin, S. L., S. Jacquemoud, and Y. Govaerts. 2001. Simulation of photon transport in a three-dimensional leaf: implications for photosynthesis. Plant Cell Environ 24:1095-1103.

6. Jacquemoud, S., W. Verhoef, F. Baret, C. Bacour, P. J. Zarco-Tejada, G. P. Asner, C. Francois, and S. L. Ustin. 2009. PROSPECT plus SAIL models: A review of use for vegetation characterization. Remote Sensing of Environment 113:S56-S66.

Scientific Method

1. Tuomivaara, T., P. Hari, H. Rita, and R. Hakkinen. 1994. THE GUIDE-DOG APPROACH: A METHODOLOGY FOR ECOLOGY. Department of Forest Ecology publications.

2. Oreskes, Naomi, Kristin Shrader-Frechette, and Kenneth Belitz. "Verification, validation, and confirmation of numerical models in the earth sciences." Science 263.5147 (1994): 641-646.

Soil Respiration

1. Raich, J., Schlesinger, W., 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B, 81 - 90.

2. Trumbore, S., 2009. Radiocarbon and Soil Carbon Dynamics. Annu. Rev. Earth Planet. Sci. Annual Reviews, Palo Alto, pp. 47-66.

3. Kuzyakov, Y., Gavrichkova, O., 2010. REVIEW: Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Global Change Biology 16, 3386-3406.

Soil Respiration, Flux-Gradient and Chamber measurements

1. Livingston, G.P. and Hutchinson, G.L., 1995. Enclosure-based measurement of trace gas exchange: Applications and sources of error. In: R.C. Harriss (Editor), Biogenic trace gases: Measuring emissions from soil and water. Blackwell Scientific, London, pp. 14-51.

2. Hutchinson, G.L. and Rochette, P., 2003. Non-Flow-Through Steady-State Chambers for Measuring Soil Respiration: Numerical Evaluation of Their Performance. Soil Sci Soc Am J, 67(1): 166-180.

3. Maier, M., and H. Schack-Kirchner (2014), Using the gradient method to determine soil gas flux: A review, Agricultural and Forest Meteorology, 192

Soil-Plant-Atmosphere Continuum

1. Shawcroft, R. W., E. R. Lemon, L. H. Allen, D. W. Stewart, and S. E. Jensen. 1974. SOIL-PLANT-ATMOSPHERE MODEL AND SOME OF ITS PREDICTIONS. Agricultural Meteorology 14:287-307.

2. Jarvis, P. G., W. R. N. Edwards, and H. Talbot. 1981. Models of Plant and Crop Water Use. Pages 151-193 in D. A. Rose and D. A. Charles-Edwards, editors. Mathematics and Plant Physiology. Academic Press, London.

3. Tuzet, A., A. Perrier, and R. Leuning. 2003. A coupled model of stomatal conductance, photosynthesis and transpiration. Plant Cell and Environment 26:1097-1116.

4. Katul, G., R. Leuning, and R. Oren. 2003. Relationship between plant hydraulic and biochemical properties derived from a steady-state coupled water and carbon transport model. Plant Cell Environ 26:339-350.

5. Sperry, J. S. 2000. Hydraulic constraints on plant gas exchange. Agricultural and Forest Meteorology 104:13-23.

6. Manzoni, S., G. Vico, A. Porporato, and G. Katul. 2013. Biological constraints on water transport in the soil–plant–atmosphere system. Advances in Water Resources 51:292-304.

7. Fatichi, S., C. Pappas, and V. Y. Ivanov. 2016. Modeling plant-water interactions: an ecohydrological overview from the cell to the global scale. Wiley Interdisciplinary Reviews-Water 3:327-368.

Soils, moisture, heat, CO2

1. Clapp, R.B. and Hornberger, G.M., 1978. Empirical Equations for Some Soil Hydraulic-Properties. Water Resources Research, 14(4): 601-604.

2. van Genuchten, M.T. and Sudicky, E.A., 1999. Recent advances in Vadose zone flow and transport modeling. In: M. Parlange and J.W. Hopmans (Editors), Vadose Zone Hydrology. Oxford Press, New York, pp. 155-193.

3. Simunek, J. and Suarez, D.L., 1993. MODELING OF CARBON-DIOXIDE TRANSPORT AND PRODUCTION IN SOIL .1. MODEL DEVELOPMENT. Water Resources Research, 29: 487-497.

Stable isotopes

1. Bowling, D.R., Pataki, D.E., Randerson, J.T., 2008. Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes. New Phytologist 178, 24-40.

2. Dawson, T.E., Mambelli, S., Plamboeck, A.H., Templer, P.H., P.Tu, K., 2002. STABLE ISOTOPES IN PLANT ECOLOGY. Annual Review Ecology Systematics 33, 507-559.

3. Griffis, T. J. (2013), Tracing the flow of carbon dioxide and water vapor between the biosphere and atmosphere: A review of optical isotope techniques and their application, Agricultural and Forest Meteorology, 174

Stomatal Optimization Models

1. Cowan, I. and G. Farquhar. 1977. Stomatal function in relation to leaf metabolism and environment. Symposium of the Society of Experimental Biology 31:471-505.

2. Hari, P., A. Makela, E. Korpilahti, and M. Holmberg. 1986. Optimal control of gas exchange. Tree Physiology 2:169-175.

3. Makela, A., F. Berninger, and P. Hari. 1996. Optimal Control of Gas Exchange during Drought: Theoretical Analysis. Annals of Botany 77:461-468.

4. Katul, G., S. Manzoni, S. Palmroth, and R. Oren. 2010. A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration. Annals of Botany 105:431-442

5. Medlyn, B. E., R. A. Duursma, D. Eamus, D. S. Ellsworth, I. C. Prentice, C. V. M. Barton, K. Y. Crous, P. De Angelis, M. Freeman, and L. Wingate (2011), Reconciling the optimal and empirical approaches to modelling stomatal conductance, Global Change Biology, 17(6), 2134-2144, doi:10.1111/j.1365-2486.2010.02375.x.

Trace Gas Exchange, VOCs

1. Fuentes, J.D. et al., 2000. Biogenic hydrocarbons in the atmospheric boundary layer: A review. Bulletin of the American Meteorological Society, 81(7): 1537-1575.

2. Monson, R.K. and Holland, E.A., 2001. Biospheric trace gas fluxes and their control over tropospheric chemistry. Annual Review of Ecology and Systematics, 32: 547-+.

3. Sharkey, T.D. and Yeh, S., 2001. Isoprene emission from plants. Annual Review of Plant Physiology and Plant Molecular Biology, 52(1): 407-436.

4. Megonigal, J.P., Hines, M.E. and Visscher, P.T., 2003. Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes. In: H.D. Holland and K.K. Turekian (Editors), Treatise on Geochemistry. Pergamon, Oxford, pp. 317-424.

5. Laothawornkitkul, J., J. E. Taylor, N. D. Paul, and C. N. Hewitt. 2009. Biogenic volatile organic compounds in the Earth system. The New phytologist 183:27-51.

Water_Use_Efficiency

1. Tanner, C. B. and T. R. Sinclair. 1983. Efficient water use in crop production: research or re-search? Limitations to efficient water use in crop production:1-27.

2. Sinclair, T. R., C. B. Tanner, and J. Bennett. 1984. Water use efficiency in crop production. BioScience 34:36-40.

3. Hatfield, Jerry L., and Christian Dold. 2019. 'Water-Use Efficiency: Advances and Challenges in a Changing Climate', Frontiers in Plant Science, 10.

4. Cowan, Ian, and G. Farquhar. 1977. 'Stomatal function in relation to leaf metabolism and environment', Symposium of the Society of Experimental Biology, 31: 471-505.

5. Medlyn, Belinda E., Martin G. De Kauwe, Yan-Shih Lin, Jurgen Knauer, Remko A. Duursma, Christopher A. Williams, Almut Arneth, Rob Clement, Peter Isaac, Jean-Marc Limousin, Maj-Lena Linderson, Patrick Meir, Nicolas Martin-StPaul, and Lisa Wingate. 2017. 'How do leaf and ecosystem measures of water-use efficiency compare?', The New phytologist.

         
 
 
 
  This material is based upon work supported by the National Science Foundation and US Department of Energy. Any opinions, findings, conclusions, or recommendations expressed in the material are those of the author(s) and do not necessarily reflect the views of the supporters.