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Introduction 

Walking through the woods, one readily observed gradients in light, air temperature and canopy 
structure.  Obviously a ‘Big-Leaf’ model cannot capture the impact of these gradients on mass and 
energy exchange.  Yet, based on our discussion of scaling and integration principles, such 
heterogeneities can be perceived to be very important, as many trace gas algorithms are non-linear 
functions of environmental variables that possess non-Gaussian probability distributions.  The next 
level of model complexity in our mathematical “zoo of models” is the multiplayer approach. 

 
Numerous one-dimensional, multi-layer biosphere-atmosphere gas exchange models exist to 
compute water vapor, CO2 and isoprene flux densities. Contemporary models consist of coupled 
micrometeorological and eco-physiological modules.  The micrometeorological modules 
compute leaf and soil energy exchange, wind, momentum transfer, turbulent diffusion, scalar 
concentration profiles and radiative transfer through the canopy.  Environmental variables, 
computed with the micrometeorological module, in turn, drive the physiological modules that 
compute leaf photosynthesis, stomatal conductance, transpiration and leaf, bole and soil/root 
respiration. This information can be used to compute isoprene and monoterpine emission rates, 
ozone, SO2, NOX deposition, as well. We discuss the salient aspects of the model system below.  
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A schematic of a multi-layer trace gas model with attendant feedbacks is presented below.  From 
this sequence of feedbacks one can speculate how changes in canopy structure, physiology or 
microclimate may alter other processes.  

 
 

Meteorological and Plant inputs
Rg,Lin, Ta, qa, [CO2], u, P, ppt, 

LAI, h, d,l, z o

Stomatal
Conductace=

f(A,Ci,Tl, 

LongwaveRadiative
Transfer:

f(Tl,IRup,IRdn,

Leaf Energy
Balance:
H,E, T l

Leaf Photosynthesis
and Respiration:

f(gs, Tl,Ci, gb, Qpar)

Source/Sinks:
ST,Sq,SC

Scalar
Profiles:

T,q,C

Radiative Transfer:

Qpar,Rnir

f()

Boundary Layer
Conductace=

f(u,l

 

 
Starting with the net radiation budget, the interception of sunlight leaves (a function of leaf-sun 
inclination angle, leaf reflectance and transmissivity) and soil will affect albedo.  The amount of 
radiation available will alter rates of evaporation, sensible and soil heat flux.  The amount of leaf 
area will alter the partitioning of net radiation into H, LE and G.  If stomata are relatively closed or 
the canopy is sparse, surface temperate will be elevated. This effect would enhance longwave loss 
of radiation and would act to reduce the net radiation budget.   
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I hope it is becoming evident that it is very difficult to handwave and predict a priori which 
feedbacks dominate and their consequence. Only with the use of a coupled model can we expect to 
make intelligent and educated guesses on plant-atmosphere interactions at the canopy scale.   
 
I stress this point, for there have been many unexpected results. Leaf physiologists expected 
stomatal closure, due to elevated CO2 to diminish canopy evaporation and increase water use 
efficiency. Yet, increases in surface leaf temperature that would be associated with stomatal closure 
elevated the surface saturation vapor pressure, so LE rates do not diminished, as expected, in direct 
proportion to stomatal closure.  The same is true with drought.  One may expect a large reduction in 
evaporation from potential rates, but one may not observe a large reduction in LE as compared to 
prior conditions when adequate soil moisture was available. 

 
a. Quantify Sources and Sinks 
 

The conservation budget for a passive scalar provides the foundation for computing scalar fluxes 
and their local ambient concentrations.  If a canopy is horizontally homogeneous and 
environmental conditions are steady, the scalar conservation equation can be expressed as an 
equality between the change, with height, of the vertical turbulent flux (F) and the diffusive 
source/sink strength, S(C,z):  

F(C , z)
= S(C , z)

z




     

The diffusive source/sink strength of a scalar in a unit volume of leaves is proportional to the 
concentration gradient normal to individual leaves, the surface area of individual leaves and the 
number leaves in the volume.  The diffusive source strength can be expressed in the form of a 
resistance-analog relationship [Meyers  and Paw U, 1987]: 

 

(z)r+(z)r

)C-(C(z)
 a(z) -=z)S(C,

sb

i      

 
where a(z) is the leaf area density (m2 m-3), (C(z) - Ci) is the potential difference of scalar 
concentration or heat content between air outside the laminar boundary layer of leaves and the air 
within the stomatal cavity (mol mol-1), rb is the boundary layer resistance to molecular diffusion 
(mol-1 m2 s1), and rs is the stomatal resistance (mol-1 m2 s1).     
 
The previous equation has much information on how plants, soil and the atmosphere interact.  
Knowledge of a(z) requires information on canopy structure.  Ecological principles are needed to 
understand how a(z) may vary with stand age or functional type [Parker, 1995]. 
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Figure 1 Example of vertical profile of leaf area index, after 
Hutchison et al. 1983. These data are fore a 40 year old 
temperate broadleaved forest. 
 
Leaf boundary layer resistances for molecular compounds can be computed using flat plate 
theory [Schuepp, 1993].  In principle such resistances, under forced convection, are a function of 
a leaf’s length scale (l), molecular diffusivity (d) and the Sherwood number, Sh. 

       
 

b

l
r

d Sh



  

The boundary layer resistance requires information on wind speed, turbulence, leaf size and 
sheltering.  Yet to understand how wind speed diminishes in a canopy we must understand 
momentum transfer, which is also affected by leaf area index and its distribution.   
 
The stomatal resistances is one of the most prominent physiological terms.  It is a function of plant 
functional type, physiological status, photosynthetic pathway, light, temperature and humidity 
exposure.  
 
Now we start to see how more and more microclimate information is needed to understand the 
behavior of the stand.  The internal concentration generally is a biochemical or physicochemical 
property.  For example, a set of biochemical reactions for photosynthesis results in the set point for 
Ci, for CO2. Whereas if we are interested in ozone we may rely on Henry’s Law. For  water vapor 
we need the Clausius-Clapyeron equation to compute the interstomatal concentration, Ci.  Finally 
we come back to C, the concentration in the air space. If the air is well mixed and the source –sinks 
are weak C may be relatively constant in the canopy.  Strong gradients in C can occur within a 
canopy  when source/sink strengths are strong and turbulence is weak.  Counter-gradient transfer 
occurs with turbulent transport (as denoted by the third order moment) is significant: 
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Figure 2. Model calculations showing theoretical sensitivity of 
CO2 profiles to thermal instability above the canopy. Z/L is 
xxx. 
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Figure 3. theoretical computations of humidity profiles assuming 
near neutral and unstable thermal stratification above the 
canopy. 
 

 

Chemical reactions are important when the time scale of the reactions are shorter than the 
turbulence time scale that determines the residence time of a parcel of air (Gao et al., 1993).  In 
this case the source/sink term is expanded to include chemical production and destruction (Sch): 
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( , )B ch

F(c,z)
= S (c,z) S c z

z





              

In the simplest circumstance, Sch is parameterized using chemical kinetics, where the rate of 
reaction is proportional to the local concentration: 

( )chS kc z                        

The introduction of chemistry into a canopy trace gas exchange model increases the need to 
compute scalar profiles accurately.  This is because errors attributed to the parameterization of 
turbulence and scalar profiles will translate directly into errors in the evaluation of chemical 
kinetics.  The other issue associated with the evaluation of source/sink Equation involves what 
suite of chemical compounds to consider. Photochemical models tend to involve hundreds of 
reactions, which can be reduced to a suite of 20 to 40 key reactions.  
 
 
Computing Turbulence and Concentration Profiles, the Need for Closure Schemes 
 
The conservation budget equation for a scalar cannot be readily solved because it does not form a 
closed set of equations and unknowns.  The equation defining the time rate of change in c contains 
a higher order moment, which is also a function of c.  This higher order moment is the vertical 
turbulent flux (F), which is defined as the covariance between vertical velocity (w) and scalar 

concentration fluctuations ( w c  ) (primes denote fluctuations from the mean and the overbar 
represents time averaging).   The exercise of closure involves defining an equation of set of 
equations that define the highest order term as a function of lower order moments.  Table 1 shows 
how the closure problem cascades in complexity as one progress from zero order closure to third 
order closure.  More and more unknowns come in existence, as due the number of equations that 
require solving. 
 
Table on fluid dynamic Equations and Closure  
 
Order of 
Closure 

Turbulence 
Budget 
Equations 

Unknowns Scalar 
Budget 
Equations 

(


c

t
) 

Unknowns Closure Scheme 

zero  ,u w   , ,T q C  ( , , , )c f t x y z  

First 
Order 

u  ' ', ' ', 'u u w w w u
 

T q C, ,  2 2 2' , ' , ' , '

' ', ' '

T q C w

w q w C
 

' '
c

w c K
z


 


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Two basic reference frames exist for evaluating the conservation budget.  They are the Eulerian 
and Lagrangian frames.  The Eulerian framework describes how the scalar concentration varies 
with time (t) at a fixed point in space (x,y,z).  It is equivalent to measuring the concentration of a 
given scalar from a tower.   Current modeling approaches apply statistical principles to physical 
relationships for scalar and wind conservation to develop a set of equations that predict the spatial 
behavior of statistical moments, e.g .means, variance and covariances of turbulence quantities.  
Such models do not predict the behavior of arbitrary plumes or fluid particles. When one derives a 
budget equation for a second order moment, it becomes readily evident that a third order moment 
term arises, and so on.  
 
The Lagrangian approach analyzes the conservation equation by following parcels of fluid as they 
move with the wind, much like the trajectory of a neutrally-buoyant balloon.   This approach 
simulates changes in motion with a statistical-mechanical approach. Movement is partly a function 
of persistence and of random forcings. 
 
The principles behind these frameworks are explored in the following subsections.    Each method 
has distinct advantages and disadvantages over the other. But none circumvent the closure 
problem.   For instance, Eulerian models rely on some type of K theory closure, even if it is 
restricted to a higher moment [J. W. Deardorff, 1978].  Lagrangian models capture the essences of 
counter-gradient diffusion, but there ‘closure’ is achieved by prescribing the attributes of 
turbulence, rather than predicting them.    It leaves the solution of the equations of fluid mechanics 
one of the great unsolved problems of physics. 
 

1. Eulerian Models 
2.  

a. Zero Order Closure 
 
The simplest closure scheme is to assume that the concentration field inside a plant canopy is 
invariant with height (or varies with some prescribed relationship).  This is an assumption that has 
been adopted by many early ecological models. They assume air temperature, humidity, and CO2 
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concentration is the same value inside the canopy as at some reference level.  This approach has 
been applied often to drive photosynthesis models.   
 
One use of the validated and detailed, micrometeorology model is as a tool for guiding the 
development of simpler parameterization schemes.  For example, by inter-comparing flux 
measurements with a detailed canopy micrometeorology model and a simpler closure scheme 
one can evaluate how the ability to estimate fluxes changes with changing model sophistication.  
Theoretically, source-sink strengths are dependent on the scalar field and vice versa.  If strong 
gradients exist inside a plant canopy and the source-sink term is sensitive to the scalar 
concentration, it can be argued that a micrometeorology model, which resolves the local 
concentration field, is required to calculate fluxes.  On the other hand, one could argue that 
simple half-order closure models would be useful if the scalar concentration profile is uniform or 
if the source-sink parameterization is insensitive to changes in scalar quantity. 
 
To test whether we need a simple or complex parameterization scheme for calculating sensible 
heat exchange (H) let's first investigate how sensitive H is to observed drawdowns or build-ups 
in air temperature (Ta).  We can define this sensitivity by using elementary calculus to determine 
the partial derivative of H with respect to air temperature: 
 

2 ( ) a p

a

a z CH

T r





 

 
where Cp is the specific heat of air.  Assuming a(z) equals 1 m-1 and ra equals 20 s m-1, yields a 
sensitivity of about -120 W m-2 C-1.   Is this sensitivity of H to air temperature strong enough to 
hinder the computation of H by ignoring vertical variations in the temperature profile?  We can 
answer this question by comparing measurements of H against model computations which 
assume that air temperature constant and varies with height.  Agreement between measured and 
calculated sensible heat flux densities is poorer when the model assumes that air temperatures are 
constant with height rather than when air temperatures vary with height.  For example, the half-
order closure scheme underestimates measured values by 41 W m-2, while the integrated canopy 
model underestimates measured H values by only 14 W m-2.  A conclusion that can be drawn 
from the above discussion is that use of the half-order closure model scheme is ill-advised for the 
computation of H.  
 
What about using a half-order closure model to compute LE and Fc?  Again, let's examine how 
sensitive computations of these flux densities are to their respective scalar.  The sensitivity of LE 
to changes in humidity can be calculated from the partial derivative of LE with respect to v: 
 

( )

v a s

E a z

r r

 





 
 

 
where  is the latent heat of evaporation.  Assuming a(z) equals 1 m-1, ra equals 20 s m-1 and rs 
equals 50 s m-1, yields a sensitivity value of -35 W m-2 (g m-3)-1.  The sensitivity of LE to v, 
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LE/v, is much less than the sensitivity of H to Ta, H/Ta.  This reduction in sensitivity is 
brought about by control of stomata on vapor diffusion through leaves. 
 
Does the sensitivity of LE to humidity hinder computations of LE that disregard vertical 
variations in the humidity profile?  We can address this question by comparing measurements of 
LE against model computations which assume that the humidity is constant and varies with 
height.  Here, we find that computations of LE based on a constant humidity profile is well 
correlated with measured values (r2=0.99; slope=1.03; Table 3) and differ measured values by 
only 21 W m-2.  Considering that LE values during midday range between 400 and 600 W m-2, a 
21 W m-2 difference is trivial during this period.   Furthermore, the performance of the half-order 
closure model is not much worse than the performance of the integrated Lagrangian model, 
which differed from measured values by 12 W m-2. Based on these calculations, it can be 
concluded that a simple half-order parameterization scheme can be used to calculate LE under 
certain conditions, the scheme will work best when rs is much greater than rb. 
 
The influence of assuming a constant CO2 profile on the computation of canopy CO2 exchange 
has been addressed in another analysis [Baldocchi, 1992].  It was shown for soybeans and a 
deciduous forest that computations of Fc are relatively insensitive to variations in the [CO2] 
profile, so a half-order closure scheme is valid for modelling this variable too. 
 
More recently we updated this exercise for a deciduous forest and examined the impact of 
assuming zero order closure with regards to daily integrals of mass and energy exchange.  The 
following figure shows that errors are not too great for Fc and LE. On the other hand substantial 
errors occur with regards to computing H if T profiles are ignored. Please recognize, H is a major 
component of computing PBL growth, the generation of convective clouds and precipitation.  
Ignoring this important feedback could have dire consequences on the computation of weather 
and climate. 
 
 
 



Espm 228, Advanced Topics on Biometeorology 
 

A v e  D a ily  L E , f(z , w ) (W  m -2)

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0

A
ve

 D
ai

ly
 L

E
,

 q
(z

)=
 q

a; 
T

(z
) 

=
 T

a

0

5 0

1 0 0

1 5 0

2 0 0

b [0 ]: -0 .7 5 3
b [1 ]: 0 .9 8 3
r ²:    0 .9 4 6 3

A v e  D a ily  H , f(z , w ) (W  m -2)

0 5 0 1 0 0 1 5 0 2 0 0

A
v

e 
D

ai
ly

 H
,

q
(z

)=
 q

a; 
T

(z
) 

=
 T

a

0

5 0

1 0 0

1 5 0

2 0 0

b [0 ]  2 .7 2
b [1 ]  0 .6 1 5
r  ²      0 .8 6 0

A v e  D a ily  F c, f(z , w ) (W  m -2)

-8 -6 -4 -2 0 2 4

A
ve

 D
a

ily
 F

c, 

q
(z

)=
 q

a; 
T

(z
) 

=
 T

a; 
C

(z
)=

C
a

-8

-6

-4

-2

0

2

4

b [0 ] 0 .0 1 1 9
b [1 ] 0 .9 8 5
r ²    0 .9 9 8

 
Figure 4 Calculations of mass and energy exchange by either 
considering feedbacks between sources/sinks and local scalar 
concentration fields or by assuming that the profiles are 
invariant and equal to the above canopy value. 
 
 

b. First Order Closure 
  
In our discussion of sources and sinks we have observed that the source/sink term is a function of 
the local concentration field and that the local concentration field is a function of the source/sink 
strength and turbulent diffusion.  The simplest (and earliest) Eulerian models on turbulent exchange 
in plant canopies adopted a first order closure scheme, called 'K-theory' [J Finnigan, 2000; M. R. 
Raupach and Thom, 1981]. The appeal of this model is in its simple reduction of the number of 
unknown variables.  K-theory models assume that turbulent transfer and molecular diffusion are 
analogs, thereby the vertical velocity-scalar covariance is represented as the product of the scalar 
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concentration gradient and a turbulent diffusivity (K): c

c
(z)= w c = K F

z

  


.  The rationale for this 

approach, at the time, was based on a presumption that the scales of mixing were small, as leaves 
broke eddies down to smaller and smaller sizes.  Without the aid of eddy covariance measurements, 
early experimentalists and modelers were unaware of how non-local transport affected local 
exchange. Nor were they aware of the fact that the mean length scale of turbulent transfer was on 
the order of canopy height rather than the length scale of leaves. 
 
To arrive at an algorithm for computing eddy exchange coefficients inside a canopy, it was 
common to assume Reynolds analogy where Km=Kv=Kh and to compute Km from information on 
leaf area density and wind speed profiles and drag coefficients [M. R. Raupach and Thom, 1981]. 
 

( )
( )m

z
K z

u z





 

 

 

( ) exp( (1 ))h

z
u z u

h
    

 
2( ) ( ) ( ) ( )

h

dz
z u z a z C z dz    

 
Another approach was to use the energy balance method to assign values for K 
 

( )
( )

( ) ( )
( )

n

a p

R z
K z

z e z
C

z P z
  


 
 

 

 
This method would need linearly averaged measurements of net radiation in the canopy and 
arrays of temperature and humidity sensors.  The drawback of this approach is the placement, 
size and aspiration of such sensors in short-statured crops. In tall forests, it is nearly impossible 
to measure spatially averaged values of net radiation without some elaborate tram system. 
 
A third approach for K comes from the shear production term of the TKE budget: 
 

2( ) ( ) ( )m l wK z z z   (m2 s-1) 

 
As a first approximation, one can use the ‘Family Portrait” of turbulence profiles that have been 
assembled by Raupach and co-workers. 
 
In a classic paper by the fluid dynamics pioneer, Stanley Corrsin [Corrsin, 1974], he wrote that 
several conditions must hold to apply K-theory.  First of all, the length scales of the turbulent 
transfer must be less than the length scales associated with the curvature of the concentration 
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gradient of the scalar. Secondly, the turbulent length scale must be constant over the distance 
where the concentration gradient changes significantly.  
 
K-theory models were originally thought to be valid because many presumed that turbulence was 
produced in the wakes of the foliage.  On this assumption, turbulent length scales were assumed 
to be sufficiently small to comply with Corrsin's [Corrsin, 1974] restrictions.   
 
An accumulating body of evidence now shows that these prior assumptions are often not valid 
inside plant canopies.  Much turbulent transfer is associated with coherent and intermittent wind 
gusts, whose length scales are comparable to or greater than the vegetation height [M.R. 
Raupach, 1988].  Since concentration gradients of many scalars exhibit strong curvature due to 
the local contribution of its source the length scale that represents the curvature of the scalar 
profile will be less than that for turbulence, violating one of Corrin's rules.  Proof that first order 
K-theory can be invalid inside plant canopies faced its death knell from observations of counter-
gradient transfer of heat and momentum ([Baldocchi and Meyers, 1988; Denmead and Bradley, 
1987] the diffusion analogy cannot admit negative values for K, as would otherwise occur under 
such circumstances (see Thurtell, 1989).   Raupach [M. R. Raupach, 1987] explains counter-
gradient transfer with the following explanation:  
 

'(because) scalar from nearby elementary sources is dispersing in a near-field 
regime...its contribution to the overall gradient (is) much greater than its contribution to 
the overall flux density.  Just below a fairly localized and intense source in the canopy, 
the near-field gradient contribution is large and positive; when this is combined with the 
upward flux of scalar required by conservation of scalar mass, a countergradient flux is 
obtained'. 

 
Since K-theory is invalid inside a plant canopy one cannot derive canopy-level exchange rates 
from concentration gradients measured inside the canopy, as was unsuspectingly discovered by 
Johnson et al. (1976). 
 
Another way to demonstrate why K theory does not work in plant canopies is to use the 
simplified version of the conservation budget equation for the eddy covariance (as applied by 
[Wyngaard, 1992].  
 

2 ' ' '
' ' ( ' )

c w w c
w c w

z z
  

 
 

 

 
This equation can be represented as the sum of a flux-gradient term and a term that arises from 
non-local turbulent transport (TT), the flux divergence of the flux of the scalar flux: 
 

' ' ~ c

c
w c K TT

z





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Inside a canopy, the vertical gradient of the third order moment is non-zero because large eddies 
are transporting material to and from the local area.  This non-local transport is a direct cause of the 
failure of K theory. In contrast this TT term is near zero above a canopy in the internal boundary 
layer. 
 
  b. Second Order Closure Models 
 
There are several unique features of canopy turbulence that must be accounted for by a 
competent theory: 

1. momentum is absorbed by the ground and elevated plant elements 
2. a hydrodynamically unstable inflexion occurs in the wind profile at the canopy 

atmospheric interface. 
3. Turbulence in the vegetation is vertically inhomogeneous. 
4. mean kinetic energy is converted to turbulent kinetic energy in the wake of plants, which 

accelerates the eddy cascade. 
 
Higher-order closure models have been proposed as a means of circumventing the inherent 
limitation of first order closure models. The appeal of this method is its mechanistic base and an 
ability to simulate counter-gradient transport [N R Wilson and Shaw, 1977].  Higher order closure 
models introduce formal budget equations for higher order moments, such as  w c  or w u' .   
 
Wilson and Shaw [N R Wilson and Shaw, 1977]produced the first higher order closure model for 
canopy flow.  The concept has earlier origins in surface layer micrometeorology  (duPont 
Donaldson, 1975; [Wyngaard, 1992; Wyngaard and Cote, 1971] and engineering flows (Launder et 
al., 1975).   The next step in development involved the derivation of the closure equations for 
volume averaging by Raupach and Shaw [M. R. Raupach and Shaw, 1982] and Finnigan ([J J 
Finnigan, 1985].   
 

“solid plant parts are excluded from the averaging volume so that the averaging proceeds 
over a multiply connected space and source or sink terms appear as the sums o fluxes 
across the solid boundaries internal to the averaging volume. In horizontally homogeneous 
canopies the choice of averaging is usually a thin wind horizontal slab that preserves the 
fundamental vertical heterogeneity of the canopy but reflects its horizontal uniformity on the 
scale of many plants” [Ayotte et al., 1999]. 

 
Finnigan [J J Finnigan, 1985]has also derived equations that contain terms for wake production and 
waving plants. 
 
In the mid 1980s Meyers and Paw U [Meyers  and Paw U, 1987]developed a third order closure 
scheme to improve the parameterization of large scale turbulence and pressure transport terms, as 
was being observed by field experiments.  Their aim was to remedy current schemes that used an 
effective K for computing transport. They used quasi-Gaussian approximation to represent the 
fourth order moments (they were approximated at combinations of second order terms).   
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Wilson [J D Wilson, 1988] built on ideas from field studies that were showing a short circuiting of 
the inertial cascade. He divided the TKE budget into two different scales, the larger scale, shear 
kinetic energy, and the smaller, wake kinetic energy.  In this form loss of SKE is a gain by WKE.   
He parameterized the dissipation shear kinetic energy (SKE) according to work of turbulence 
against form drag (which short-circuited the eddy cascade) and conventional viscous dissipation.  
Most recent additions to higher order closure theory have been papers by Katul and Albertson 
[Katul and Albertson, 1999]),  Ayotte et al., [Ayotte et al., 1999]and Massman and Weil [Massman 
and Weil, 1999].   
 
Equations that describe mean wind speed and turbulence are introduced to evaluate dependent terms 
in the second moment equation and in the source-sink function (i.e. rb and c(z)).  For example, wind 
speed and turbulence in a plant canopy are described by the budget equations for mean horizontal 

wind velocity ( u ), tangential momentum stress ( w u  ) and the turbulent kinetic energy components 

(u u , v v , w w      ).  
 
To understand the closure problem and the ‘mathematical zoo’ of equations that evolve, let’s 
start with the ‘simplest’ example of the higher order closure problem, how to assess the budget 
equation for wind velocity, u ([N R Wilson and Shaw, 1977]).  To solve this problem one starts 
with the Navier-Stokes equation for the conservation equation for a wind velocity component. 
The Navier-Stokes equation states that the time rate of change of wind velocity (acceleration) is 
caused by the foreces that are imposed on the fluid. These forces are associated with pressure 
gradients, thermal buoyancy and viscous drag.  Using tensor notation, this equation is expressed 
as: 

2

3
i i i i

j i
j i j j

du u u up g
u

dt t x x T x x

    
     
    

 

The physical representation of this equation is rather simple.  We note that in the atmospheric 
surface layer and plant canopy, we ignore the Coriolis force.    

The problem we face arises with solving the equation as turbulence is multiscaled.  Turbulence 
shows behavior that is both large scale and coherent and fine scale and chaotic.  This behavior 

arises in part from the non-linear nature of the Navier-Stokes equation ( ( )
u

f u u
t


 


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from Turbulence and Heat Transfer Laboratory, University of Toyko 

http://www.thtlab.t.u-tokyo.ac.jp/index.html 
 

In deriving the set of guiding equations, we use Einstein tensor notation, u1,u2,u3 corresponds 
with the vectors u,v,w which are directed in the longitudinally (x), lateral (y) and vertical (z) 
directions.  Summation is implied when there is a repeated index, eg 

1 1 2 2 3 3i ij j i i iA a A a A a A a A     or 

1 2 3
1 2 3

i i i i
j

j

u u u u
u u u u

x x x x

   
  

   
 

 

On the basis of this equation, one can derive mean equations for conservation budget of 
momentum transfer and turbulent kinetic energy (or the variance equations of the three 
orthogonal wind velocities), using rules of Reynolds’ averaging.  Ultimately one needs to solve a 
system of equations that contains 5 equations and 5 unknowns. 

The time-averaged version of du/dt leads to: 

2 2

3

' ' '( , , , ) 'i ji i i i
j i

j j i i j j j j

u uu u u udu t x y z p p g
u

dt t x x x x T x x x x

   
    

        
        

 

 
The application, of several rules of Calculus, lead to the non-linear second order terms.  First the 
total time derivative can be expressed as the sum of the local time derivative and the ‘advection’ 
terms:  
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( , , , )dc t x y z

dt
c dx c dy c dz c

t dt x dt y dt z

c c c c
u v w

t x y z



   
   

   
   

  
   

 

 
 
Term 1, the time derivative:  
 

( ') 'iu u u u u u

t t t t t

     
   

    
 

 
Term 2, the advection term: 
 

'
( ')( )

' '
' '

i
j

j

u u u
u u u

x x x

u u u u
u u u u

x x x x

  
   

  

   
  

   

 

 
Term 3: the pressure gradient term: 
 

'

i i i

p p p

x x x

  
 

  
 

 
Term 4, viscous drag term: 
 

2 2 2 '

j j j j j j

u u u

x x x x x x
    

 
     

 

 

Time averaging i
j

j

u
u

x




results in the production of a mean advection term, i
j

j

u
u

x




, and a second 

order covariance term 
' 'i j

j

u u

x




.   This covariance term is the basis behind higher order closure 

theory and problem.  The production of a mean budget equation at a given order by time 
averaging forms a higher order term.  Its form is based on a mathematical trick and use of 
knowledge about the behavior of incompressible fluids.  When one time averages the 
instantaneous NS equation we arrive with one term 
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We know that for incompressible fluids: 
'

0j j j

j j j

u u u

x x x

  
  
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' ' ' '
' 'i j j i

i j
j j j

u u u u
u u

x x x

  
 

  
 

 
yielding 
 

' ' '
'i j i

j
j j

u u u
u

x x

 


 
 

 
Contrasting canopy and surface layer flow reveals the relative importance of different terms.  
 
In atmospheric flow the second and fifth terms on the RHS are normally negligible.  Inside a plant 
canopy, commonly neglected terms are important and significant.  The cited terms represent form 
(pressure) drag and viscous drag.   
 
Form drag is due to pressure gradients across solid obstructions to the wind field.   
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We note the average gradient of pressure fluctuations is non-zero, which the gradient of averaged 

pressure fluctuations is zero: 
' '

0
p p

x x

 
 

 
. One can see pressure deficits in the lee of wind 

obstructions. 
 

Viscous drag term arises because terms like 
'u

z




are non-zero as the viscous drag over leaf surfaces 

is distributed in space. 
 
In the case of fluid flow in a canopy the following the set of equations needed to be solved.    
 

1. Horizontal velocity 
 
 

2' ' '
0

u u w p p u

t z x x z z


 
    

     
     
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Wilson and Shaw (1977), among others, assume that the pressure fluctuation gradient can be 
assessed as a drag force: 
 

2'
( )d i

i

p
C a z u

x





 

 
They also assume that the viscous drag force and mean horizontal pressure gradients are small in 
comparison. This assumption, for a horizontally homogeneous canopy exposed to steady state 
conditions, leads to a balance between the flux divergence of the Reynolds stress and the drag 
force: 
 

2' '
( )d

w u
C a z u

z





 

 
Inside a canopy, the flux divergence of momentum transfer is a function of a drag coefficient, 
leaf area density and velocity squared.  This term is quite distinct from its value above a canopy, 
which is zero.  Or in the plantetary boundary layer where pressure gradients and Coriolis forces 
come into play (and lead to the Eckmann spiral). 
 

2. Second Order Moments 
 
Multiplying ui times du’/dt and applying rules of Reynolds averaging produces budget equations 
for second order moments, uw, Reynolds shear stress and uu,vv and ww, components of the 
turbulent kinetic energy equation. 
 
The general equation for second order velocity components is: 
 

2

3 3

' ' '' ' ' '
' ' ' '

' ' ' ' ' ' ' ' ' '' '
' ' ' ' ' 2

i k ji k i k i k
j k j i j

j j j j

k i k i i k i k
k i i k k i

i k i k i k j j j j

u u uu u u u u u
u u u u u

t x x x x

u p u p u u u u u up p g
u u p u u

x x x x x x T x x x x
     

   
    

    

                                          
 
 
From this long and complicated equation we can compute time averaged equations for 
components of the turbulent kinetic energy budget (variance) and momentum transfer [Meyers  
and Paw U, 1987; Shaw, 1977] 
 

 
' ' ' ' ' ' ' ' 2

0 2 ' ' 2 2
3

u u u w u u u p u p
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t z z x x


 
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t z z
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 
  
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A simplified version of the total tke (  1
' ' ' ' ' '

2
e u u v v w w   ) budget is: 

 
' ' ' ' ' '

0 ' '
e u gw w e p w

w u
t z z z

 


   
      

   
 

 
 
Note some pressure terms are missing from the integral equation (check::: because of return to 
isotropy, the summation of the pressure terms is zero. 
 
 

3
*~

u

kz
  

 
Momentum Budget 
 

' ' ' ' ' ' ' ' '
0 ' ' ( )

u w u w u u p u p w
w w

t z z z x

    
     

    
 

 
When one applies time averaging, no additional terms are added to the momentum budget 
equation (as compared to the free atmosphere) when it is applied to a vegetated canopy [Shaw, 
1977].  Shaw (1977) goes on to defines the terms on the right hand side as: I) shear production 
due to interactions between the turbulent field and the mean velocity gradient, II) net transport of 
stress and III) is a return to isotropy term due to pressure and velocity interactions.  With 
              
Scalar conservation, variance and co-variance equations 
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w
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Horizontally Averaged Equations 
 
The equation presented so far are for a point in space.  Due to the structural heterogeneity of 
plant canopies, many canopy micrometeorologist now prefer to present the conservation 
equations in terms of horizontally-averaged equations [J Finnigan, 2000; M. R. Raupach and 
Shaw, 1982].  This operation both simplifies and complicates the problem.  The operation of 
spatial and temporal averaging leads to the introduction of new terms, called dispersive fluxes.  
But they also lead to a set of equations that are not point specific. 
 
In their classic analysis of spatial averaging, Rapauch and Shaw [M. R. Raupach and Shaw, 
1982]discuss two averaging schemes.  Scheme I averages the instantaneous flow horizontally 
across a large plane to eliminate variation from plant elements or large scale eddies: 
 

( , ) "( , )u z t u u z t     
 
where one denotes spatial averaging by double brackets <> and departure from the horizontal 
mean by “.   
 
Scheme II time averages three dimensional flow, and horizontally averages the flow across a 
plane large enough to eliminate effects of plant elements:  
 

( , ) "( , )u z t u u z t    
 
Under scheme two one develops a time averaged version of the Navier-Stokes equation (du/dt) at 
a single point then is averaged across a plane large enough to eliminate effects of plant structure 
variation.  When one assumes steady-state conditions, a horizontally homogeneous canopy, 
schems I and II should converge.   Raupach and Shaw show that their first averaging scheme 
yields: 
 
1 1 1

" "
2 2 2i i i i i iu u u u u u   

 
Their averaging scheme II yields 
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The term, u ui i" " , is denoted as a dispersive flux. A covariance occurs between two variables 

when there is spatial correlation among them. 
 
Ayotte et al. (1999) [Ayotte et al., 1999] articulate the spatial averaging rules as: 
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'' 0jA   

 
They also stress some rules relating to continuity, which holds for instantaneous, spatially 
averaged, time and space averaged and spatial fluctuations: 
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The horizontal average for u is defined across a region in or above the canopy as: 
 

1
( , , )

R

u u x y z dxdy
A

     

Derivative operations are quite complex. Let’s consider pressure fields across an series of 
elements in the wind. 
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At a particular point in the wind field downwind from an obstruction, 
"
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 
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also show that
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The spatial averaged equation for horizontal velocity is: 
 
 

2 2' ' " "
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u w u up p u u
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The spatial averaged equation for turbulent kinetic energy is: 
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The spatial averaged equation for momentum transfer is: 
 

' ' ' ' ' ' '' '
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u w u w w u u pu w
w u p

t z x z x z

                  
 

 
 
For simplicity we are assuming that the dispersion and wake productions terms are negligible in 
the momentum budget and are ignoring waving effects in the tke budget.  Full derivations are 
provided in Finnigan (2000) and Ayotte et al. (1999). 
 
 
Second order Approximations 
 
An effective eddy exchange coefficient is typically applied to close third order terms [M.R. 
Raupach, 1988].  It follows the form: 
 

' '
' ' ' i i

i i

du u
w u u K

dz
   

 
This allows the third order moment to be computed in terms of the second order terms: 
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q is the characteristic velocity 
 

' 'i iq u u  

 
and lambda is a coefficient. 
 
Pressure gradients are parameterised as a function of a drag coefficient, the leaf area density and 
the wind velocity squared [Katul and Albertson, 1998; N R Wilson and Shaw, 1977]. 
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Viscous drag is negligible in the momentum equation compared to form drag forces 
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For turbulence we have a system of 5 equations and 5 unknowns.  The resulting equations with 
second order closure assumptions on the basis of steady state conditions and horizontal 
homogeneity (Wilson and Shaw, 1977; Meyers and Paw U, 1987; Wilson, 1988; Katul and 
Albertson, 1998) are: 
 
Momentum transfer 
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Reynolds’ Stress budget 
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Variance Budget for longitudinal wind velocity 
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Variance Budget for Lateral wind velocity 
 

2 3
1

2 3

' ' 2
0 ' '

3 3 3

q d v vd q q q
v v

dz dz



 

            
 

 
Variance Budget for vertical velocity 
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The molecular destruction rate of turbulent kinetic energy per unit mass is 
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and is parameterised in terms of a velocity scale cubed and a length scale.  Near the surface the 
velocity scale is proportional to u* and l is close to z. 
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Viscous dissipation is linked to isotropic viscous dissipation (as occurs in the free atmosphere) 
and work against pressure and form drag of plant elements. 
 
Dispersion and wake production terms arise in the tke and momentum budgets. They are 
important in the tke budget, but are negligible in the momemtum budget. 
 
 
Third Order Closure 
 
The budget equations for the second order moments, unfortunately, include additional unknowns 

of the third order (such as w w u , w w c      ).   At the third order, Meyers and Paw U (1987) 
[Meyers  and Paw U, 1987]define and solve 22 equations.  The equations they used are listed 
below and are separated for the scalar and the wind field.  The logic of attaining closure at orders 
two or three is an assumption that errors introduced at higher orders will have a minimal effect on 
the estimate of the flux and concentration field.  Deardorff [J.W. Deardorff, 1972] perceptively 
criticizes the use of 'effective' exchange coefficients to close budget equations of higher order 
moments because of an ultimate reliance on down-gradient diffusion.  Deardorff argues that 
'effective' exchange coefficients are inadequate for near-field flows──which occur in the vicinity of 
sources and sinks.  This is because any turbulent diffusivity, K, in the vicinity of a source or sink is 
linearly related to the time period that fluid parcels have travelled.  Only after a long travel distance 
is the time independent, "far-field" limit of K reached.  The dispersion of a scalar released by 
sources at different distances upwind from an observer (as in a plant canopy) cannot be described by 
a single effective diffusivity (Wilson, 1989), as is attempted in higher order closure schemes.  Other 
criticisms of higher order closure models revolve around the use of certain laboratory-based model 
parameters and parameterization schemes in the natural environment (Wyngaard, 1988).  Yet 
despite the criticisms listed above, Eulerian higher order closure models have successfully simulated 
temperature and wind speed profiles and fluxes of momentum, heat and moisture within and above 
crop canopies (Meyers and Paw U, 1986, 1987; Naot and Maherer, 1989).  However, in a recent 
analysis, Katul and Albertson (1998) conclude that there is no clear advantage to close the wind 
and turbulence equation beyond the second order. 
 
A typical third order moments assessed with a gradient-diffusion approximation is: 
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The effective exchange coefficient is defined from: 
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Triple moments for scalars are typically closed with the Quasi Guassian approximation (e.g. 
Meyers, 1985): 

' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 'a b c d a b c d a c b d a d b c    

A typical budget for a third order moment is: 
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Simulations 
 
 With the higher order closure model of Meyers and Paw U we can explore the effects of leaf area 
index and its vertical distribution the wind and turbulence within and above a canopy. Below are 
simulations for a sparse (LAI=2) and dense (LAI=6) canopy.  Note shifts in wind profiles, the 
change in shear, the generation of turbulence (w’w’ and u’u’) where leaf area is dense and the 
significant transport terms. 
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APPENDICES 

 
 
 

1. Boussinesq Approximation 
 
 
 
Boussinesq approximation for density fluctuations. 
Flow is incompressible, so: 
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Leading to 
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 but density fluctuations are coupled with the acceleration of gravity in the Navier Stokes Equation 
to yield significant forces. 
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1. Reference State 
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so in essence fluctuations in density can be approximated with temperature fluctuations 
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