
Collecting Ethernet Data from the
LI‑7700 CH4 Analyzer on a CR30001 or
CR10001 Datalogger
The LI-7700 Open Path Methane Analyzer is a
high speed, high precision methane analyzer
designed for eddy covariance applications.
It can be used as a standalone device or in
conjunction with the LI-7550 Analyzer Inter-
face Unit. When used with the LI-7550, data
output options include SDM (Synchronous
Devices for Measurement), RS-232, Ether-
net, high speed Digital-to-Analog Converters
(DACs) and on-board data logging to a USB
flash drive. However, when operated as a
standalone device, only an Ethernet connec-
tion is available from the LI-7700.

In this application note we describe methods
for collecting the Ethernet output from an
LI‑7700 with Campbell Scientific, Inc. data-
loggers. The example CRBasic code given
here should be applicable to both the CR1000
and CR3000 dataloggers.

Networking
A physical network connection is required
from the LI-7700 to the datalogger to allow
data collection. On the LI-7700, the network
connection is accessed through an eight-pin
Turck® connector on the bottom of the instru-
ment. Network connections for the CR1000
and CR3000 are accessed through the instru-
ment’s peripheral port using Campbell Sci-
entific’s NL115 Ethernet and CompactFlash®
Module.

The LI-7700 and datalogger can be connected
directly together or via a local area network,
but a direct connection is recommended.
Direct connections eliminate the possibility
of additional network traffic, which can slow
data transfer and lead to missed data packets
by the logger. However they are connected,
the logger and the LI-7700 should be config-
ured to operate with static IP addresses on the
same subnet. An example network configura-
tion is given in Table 1.

Within the datalogger program, the logger’s IP
port must be enabled and configured to look
for data packets sent from the LI-7700’s IP ad-
dress. This is done using the TCPOpen com-
mand, which is given below:

The value 7700 in the TCPOpen command
is the IP port where the LI-7700 is located.
This is set at the factory for the instrument and
will always be 7700. The IP address of this
LI-7700 is 172.24.23.61 and is set by the
user in the Manual Controls window of the
instrument’s Windows® interface software. For
the datalogger to talk to the LI-7700 the first
three octets of their IP addresses should match
(e.g. 172.24.23.‌nn), but the last octet must
be unique to each device. The subnet mask
and gateway should be set the same on both
devices.

1 Campbell® Scientific, Inc. Logan, Utah USA

Table 1: Example network configuration. Ethernet
settings are set on the datalogger using the Device
Configuration utility in LoggerNet (see the NL115
user manual) and are set on the LI-7700 in the
Manual Controls window of the Windows interface
software (see the LI-7700 user manual).

Device Datalogger LI-7700
IP Address 172.24.23.60 172.24.23.61
Subnet Mask 255.255.0.0 255.255.0.0
Gateway 0.0.0.0 0.0.0.0
Port 6785 7700

A
pp

lic
at

io
n

N
O

TE
A

pp
lic

at
io

n
N

O
TE

Public tcpip_socket_status As Long
Dim socket As Long

BeginProg
 TCPClose (101)
 Scan (100,mSec,300,0)
 …
 NextScan

SlowSequence
 Scan (5,Sec,3,0)
 tcpip_socket_status = SerialInChk (socket)
 If (tcpip_socket_status = -1) Then
 socket = TCPOpen (“172.24.23.61”,7700,527)
 EndIf
NextScan

Data output from the LI-7700 is in the form of tab
delimited ASCII text strings followed by a line feed
(Figure 1). Upon connecting to the instrument, a set
of headers containing labels for the variables in-

cluded in each record type are sent from the LI-7700
to the datalogger. DATAH and DATASTATH list the
variables included in the DATA and DATASTAT re-
cords, respectively. Any time the output rate is set to
a value greater than zero, new DATA records will be
output at the current output rate. DATASTAT is turned
off by default in the LI-7700, but if needed it can be
enabled by sending the command:

<licor><li7700><output><status>true
</status></output></li7700></licor>

followed by a line feed. The maximum output fre-

quency for DATASTAT is fixed at 2Hz. When the
instrument’s output rate is configured for greater than
2Hz, a DATASTAT record will not be output follow-
ing each DATA record. Most variables included in

the DATASTAT record are duplicated by flags in the
diagnostic variable included in each DATA record, so
it is generally not necessary to continuously collect
DATASTAT. DATASTAT is most useful for trouble-
shooting purposes.

When the output rate is set to a value greater than
zero, new DATA records are continuously output
from the LI-7700. With the instrument configured this
way, the datalogger can be set up to act like a termi-
nal that captures each new DATA record, as in the
example code given below:

DATAH DATE TIME SECONDS NANOSECONDS DIAG CH4D …
DATASTATH MSEC SECONDS NANOSECONDS DIAG RSSI REFRSSI …
DATA 2010-04-20 9:34:17 1271774057 200000000 15 0.130873 …

DATASTAT 5397000 1271774057 362000000 15 45.13 22.3125 …
STATUS header

DATA header

DIAGNOSTIC
header

STATUS record

DATA record

DATA 9:34:17 1271774057 300000000 15 0.130738 …2010-04-20

DATA 9:34:17 1271774057 400000000 15 0.130679 …2010-04-20
DATA 9:34:17 1271774057 500000000 15 0.130624 …2010-04-20

DATADIAGH BOXCONNECTED BADAUXTC3 BADAUXTC2 BADAUXTC1 MOTORFAILURE CALIBRA… …

… … … … … … … …

Figure 1. Data output format from the LI-7700. In this example DATASTAT has been enabled.

Public LI7700_time(3) As Long
Public LI7700(22)
Public tcpip_socket_status As Long
Dim socket As Long
Dim DATA_string As String * 237
Dim NBR As Long

DataTable (Ethernet_data,TRUE,-1)
 Sample (3,LI7700_time(1),Long)
 Sample (19,LI7700(4),IEEE4)
EndTable

BeginProg
 TCPClose (101)
 Scan (10,mSec,300,0)
 SerialInRecord (socket,DATA_string,&h44,0,&h0A,NBR,01)
 SplitStr (LI7700_time(1),DATA_string,CHR(09),3,4)
 SplitStr (LI7700(1),DATA_string,CHR(09),22,4)

 If NBR>0 Then
 CallTable Ethernet_data
 EndIf

NextScan

SlowSequence
 Scan (5,Sec,3,0)
 tcpip_socket_status = SerialInChk (socket)
 If (tcpip_socket_status = -1) Then
 socket = TCPOpen (“172.24.23.61”,7700,527)
 EndIf
NextScan

2

Data output and collection

In this example, SerialInRecord looks for ASCII
strings starting with “D” (&h44) to define when to
start writing data to the variable DATA_string.
SplitStr then parses out individual data points
from DATA_string based the occurrence of tab
charters (CHR(09)) in the ASCII string. The first
three values included in the DATA record sent from
the LI-7700 are 32 bit time stamps. These must be
treated differently from the rest of the variables
parsed from DATA_string, otherwise when the
datalogger converts them from string to numeric
variables they will be rounded to 24 bits by default.

The scan interval used in this example,
Scan‌(10,mSec,300,0), is much faster than the
rate at which DATA records would normally be col-
lected and the variables resulting from SplitStr
are only written to the data table when a new record
is received. Data from the LI-7700 should be collect-
ed this way because of timing asynchrony between
the instrument and the datalogger. In a continuous
data collection mode the timing between DATA
records is controlled by the LI-7700, but the time
between collecting DATA records is controlled by the
scan interval of the logger. For a DATA record to be
successfully collected by the logger, the record must
be output within a certain window when the execu-

tion of a scan occurs. Since time keeping is handled
separately by the two devices there is no mechanism
ensuring this will happen. By using a scan interval
that is much faster than the output rate of the LI-7700
the likelihood of missing a record is significantly
reduced (Figure 2).

The LI-7700 also supports a polled mode, where the
datalogger requests a new DATA record with each
scan. When polled, the LI-7700 will return the next
DATA record collected by the instrument at its base
rate (40Hz) after the poll command is received. This
will result in a baseline jitter in the data of 25 milli-
seconds (Figure2C).

Polling is enabled by setting the output rate to zero
and sending the command:

<licor><li7700><cmd><poll>true
</poll></cmd></li7700></licor>

followed by a line feed whenever a new DATA re-
cord is desired.

The SerialOutBlock instruction can be used to
issue the string and should be placed in the main
datalogger program following the SerialInRecord
instruction, as given on the following page:

0

100

200

300

0
100

200

300

0

100

200

300

0 0.5 1 1.5 2 2.5 3 3.5

A.

B.

C.Ti
m

e
be

tw
ee

n
D

AT
A

re
co

rd
s

(m
s)

Time (hrs)

Figure 2: The effect of various scan interval and output rate combinations. Time between DATA records is based on the
LI‑7700’s time stamp, not that of the datalogger. Panel A shows a 100 ms scan interval and 10 Hz output rate. Using this
combination, records were skipped as the two clocks moved in and out of phase, resulting in a 100 to 200 ms jitter in
the data. Panel B shows a 10 ms scan interval with a 10 Hz output rate and conditional sampling. No jitter occurred in
this configuration. The data in panel C, collected using polling and a 100 ms scan interval, shows considerable base line
jitter of 25 ms.

3

Auxiliary sensor data
There are four single ended analog input channels and
three thermocouple input channels available on the
LI-7700. In applications where it is necessary to have
auxiliary sensor data synchronized with the data from
the LI-7700 (e.g. wind speed data in an eddy covari-
ance application), the sensor should be connected via
these inputs. This will compensate for the clock asyn-
chrony between the datalogger and LI-7700, ensuring
that the auxiliary sensor is sampled at the same rate as
the LI-7700.

It is important to note that the sensor should be con-
nected directly to the LI-7700, whether operating in
polled mode where timing jitter is obvious between
records, or when operating in continuous mode with
conditional sampling even though there is no jitter
between DATA records. This is because in continuous
mode, there is an apparent drift in the time between
when DATA records are written to the final storage ta-
ble, which is equal to the scan interval. In the example
used here, the datalogger’s time stamp shows a 10 ms
jitter roughly every five minutes (Figure 3). Using the

LI-7700 as the primary interface for the auxiliary sensor
ensures this jitter does not affect data quality.

Note: If adding the LI-7700 to a flux station where car-
bon dioxide and water vapor are measured, it may be
necessary to split the output from the sonic anemom-
eter so that it can be sampled by both the datalogger
directly and the LI-7700.

Ti
m

e
be

tw
ee

n
da

ta
ta

bl
e

en
tri

es
 (m

s)

Time (min)

75

85

95

105

115

125

0 5 10 15 20 25 30 35 40

Figure 3: Time between data table entries from the data-
logger clock. Note that while there is a 10 ms jitter, the time
between DATA records from the LI-7700 clock is always
100 ms (Figure 2B).

Public LI7700_time(3) As Long
Public LI7700(22)
Public tcpip_socket_status As Long
Dim socket As Long
Dim DATA_string As String * 237
Dim NBR As Long

DataTable (Ethernet_data,TRUE,-1)
 DataInterval (0,0,Sec,100)
 Sample (3,LI7700_time(1),Long)
 Sample (19,LI7700(4),IEEE4)
EndTable

BeginProg
 TCPClose (101)
 Scan (100,mSec,300,0)
 SerialInRecord (socket,DATA_string,&h44,0,&h0A,NBR,01)
 SerialOutBlock (socket,”<licor><li7700><cmd><poll>true</poll></cmd></li7700></
licor>”+CHR(10),61)
 SplitStr (LI7700_time(1),DATA_string,CHR(09),3,4)
 SplitStr (LI7700(1),DATA_string,CHR(09),22,4)
 CallTable Ethernet_data
 NextScan

SlowSequence
 Scan (5,Sec,3,0)
 tcpip_socket_status = SerialInChk (socket)
 If (tcpip_socket_status = -1) Then
 socket = TCPOpen (“172.24.23.61”,7700,527)
 EndIf
NextScan

4

Appendix A: Example CRBasic program for unprompted data collection. The example code can be copied and pasted
directly into CRBasic, and should compile correctly for both the CR1000 and CR3000.
PipeLineMode

Const Output_interval = 30 ‘Diagnostic data table output interval.
Const Buffer_Size = 527
Const NBE = 237 ‘Number of bytes expected	

Public LI7700_time(3) As Long
Public LI7700(22)
Public diag_bits(16) As Boolean
Public tcp_close As Boolean
Public tcp_open As Boolean
Public tcpip_socket_status As Long

Alias LI7700_time(1) = milliseconds
Alias LI7700_time(2) = seconds
Alias LI7700_time(3) = nanoseconds
Alias LI7700(4) = Diagnostic
Alias LI7700(5) = CH4_density
Alias LI7700(6) = CH4_mole_fraction
Alias LI7700(7) = Temperature
Alias LI7700(8) = Pressure
Alias LI7700(9) = RSSI
Alias LI7700(10) = Drop_rate
Alias LI7700(11) = Aux(8)
Alias LI7700(19) = TC(3)
Alias LI7700(22) = DATA_checksum
Alias diag_bits(1) = box_connected
Alias diag_bits(2) = bad_aux_tc3
Alias diag_bits(3) = bad_aux_tc2
Alias diag_bits(4) = bad_aux_tc1
Alias diag_bits(5) = motor_failure
Alias diag_bits(6) = calibrating
Alias diag_bits(7) = bottom_heater_on
Alias diag_bits(8) = top_heater_on
Alias diag_bits(9) = pump_on
Alias diag_bits(10) = motor_spinning
Alias diag_bits(11) = block_tmpr_unregulated
Alias diag_bits(12) = laser_tmpr_unregulated
Alias diag_bits(13) = bad_tmpr
Alias diag_bits(14) = ref_unlocked
Alias diag_bits(15) = no_signal
Alias diag_bits(16) = not_ready

Units milliseconds = ms
Units seconds = s
Units nanoseconds = ns
Units CH4_density = mmol/m^3
Units CH4_mole_fraction = umol/mol
Units Temperature = C
Units Pressure = kPa
Units RSSI = %
Units Drop_rate = %
Units TC() = C

Dim socket As Long
Dim DATA_string As String * NBE
Dim NBR As Long ‘Number of bytes returned in DATA_string

Dim checksum_datalogger
Dim checksum_flag As Boolean
Dim diag_work As Long
Dim n

DataTable (Ethernet_data,TRUE,-1)
 Sample (3,milliseconds,Long)
 Sample (19,Diagnostic,IEEE4)
 Sample (1,checksum_datalogger,IEEE4)
EndTable

DataTable (Diagnostic_flags,TRUE,-1)
 DataInterval (0,Output_interval,Min,100)
 FieldNames (“nnd_7700_Tot”)’No new data (sensor not connected or powered)
 Totalize (1,n,IEEE4,NBR<>0 IMP checksum_flag)
 FieldNames (“checksum_err_7700_TOT”)’Checksum error
 Totalize (1,n,IEEE4,checksum_flag IMP NOT (box_connected))
 FieldNames (“box_connected _TOT”)’LI-7550 connected or not
 Totalize (1,n,IEEE4,checksum_flag IMP NOT (bad_aux_tc3))
 FieldNames (“bad_aux_tc3_TOT”)’Bad reading at TC3
 Totalize (1,n,IEEE4,checksum_flag IMP NOT (bad_aux_tc2))
 FieldNames (“bad_aux_tc2_TOT”)’Bad reading at TC2
 Totalize (1,n,IEEE4,checksum_flag IMP NOT (bad_aux_tc1))
 FieldNames (“bad_aux_tc1_TOT”)’Bad reading at TC1
 Totalize (1,n,IEEE4,checksum_flag IMP NOT (motor_failure))
 FieldNames (“motor_failure_TOT”)’Mirror spin motor failure
 Totalize (1,n,IEEE4,checksum_flag IMP NOT (calibrating))
 FieldNames (“calibrating_TOT”)’Calibration routine enabled
 Totalize (1,n,IEEE4,checksum_flag IMP NOT (bottom_heater_on))
 FieldNames (“bottom_heater_on_TOT”)’Bottom mirror heater on
 Totalize (1,n,IEEE4,checksum_flag IMP NOT (top_heater_on))
 FieldNames (“top_heater_on_TOT”)’Top mirror heater on
 Totalize (1,n,IEEE4,checksum_flag IMP NOT (pump_on))
 FieldNames (“pump_on_TOT”)’Washer pump activated
 Totalize (1,n,IEEE4,checksum_flag IMP NOT (motor_spinning))
 FieldNames (“motor_spinning_TOT”)’Bottom mirror spinning
 Totalize (1,n,IEEE4,checksum_flag IMP NOT (block_tmpr_unregulated))
 FieldNames (“block_tmpr_unregulated_TOT”)’Block temp not at set point
 Totalize (1,n,IEEE4,checksum_flag IMP NOT (laser_tmpr_unregulated)))
 FieldNames (“laser_tmpr_unregulated_TOT”)’Laser temp not at set point
 Totalize (1,n,IEEE4,checksum_flag IMP NOT (bad_tmpr))
 FieldNames (“bad_tmpr_TOT”)’Bad TC in optical path
 Totalize (1,n,IEEE4,checksum_flag IMP NOT (ref_unlocked))
 FieldNames (“ref_unlocked_TOT”)’Reference signal not line locked
 Totalize (1,n,IEEE4,checksum_flag IMP NOT (no_signal))
 FieldNames (“no_signal_TOT”)’No laser signal detected
 Totalize (1,n,IEEE4,checksum_flag IMP NOT (not_ready))
 FieldNames (“not_ready_TOT”)’LI-7700 not ready
EndTable

BeginProg
 TCPClose (101)
 n = 1
 Scan (10,mSec,300,0)
 SerialInRecord (socket,DATA_string,&h44,0,&h0A,NBR,01)
 SplitStr (LI7700_time(1),DATA_string,CHR(09),3,4)
 SplitStr (LI7700(1),DATA_string,CHR(09),22,4)
 checksum_flag = (DATA_checksum EQV (CheckSum (“D”&DATA_string,7,NBR-2)))
 checksum_datalogger = CheckSum (“D”&DATA_string,7,NBR-2)

 ‘Break up the Diagnostic into 16 separate bits.
 If ((NBR <> 0) AND (checksum_flag)) Then
 diag_work = Diagnostic
 box_connected = diag_work AND &h0001
 bad_aux_tc3 = diag_work AND &h0002
 bad_aux_tc2 = diag_work AND &h0004
 bad_aux_tc1 = diag_work AND &h0008
 motor_failure = diag_work AND &h0010
 calibrating = diag_work AND &h0020
 bottom_heater_on = diag_work AND &h0040
 top_heater_on = diag_work AND &h0080
 pump_on = diag_work AND &h0100
 motor_spinning = diag_work AND &h0200
 block_tmpr_unregulated = diag_work AND &h0400
 laser_tmpr_unregulated = diag_work AND &h0800
 bad_tmpr = diag_work AND &h1000
 ref_unlocked = diag_work AND &h2000
 no_signal = diag_work AND &h4000
 not_ready = diag_work AND &h8000
 Else
 Move (milliseconds,3,-99999,1)
 Move (LI7700(1),21,NaN,1)
 Move (diag_bits(1),16,TRUE,1)
 EndIf

 If NBR<>0 Then
 CallTable Ethernet_data
 EndIf
 CallTable Diagnostic_flags
 NextScan

SlowSequence
 Scan (5,Sec,3,0)
 tcpip_socket_status = SerialInChk (socket)

 If (tcp_close) Then
 tcp_close = FALSE
 TCPClose (socket)
 EndIf

 If ((tcpip_socket_status = -1) OR tcp_open) Then
 tcp_open = FALSE
 socket = TCPOpen (“172.24.23.61”,7700,Buffer_size)
 EndIf
 NextScan

PipeLineMode

‘Measurement Rate 5 Hz 10 Hz 20 Hz
Const Scan_interval = 100 ‘200 mSec 100 mSec 50 mSec
Const Output_interval = 30 ‘Diagnostic data table output interval.

Const Buffer_Size = 527
Const NBE = 237 ‘Number of bytes expected	

Public LI7700_time(3) As Long
Public LI7700(22)
Public diag_bits(16) As Boolean
Public tcpip_socket_status As Long

Alias LI7700_time(1) = milliseconds
Alias LI7700_time(2) = seconds
Alias LI7700_time(3) = nanoseconds
Alias LI7700(4) = Diagnostic
Alias LI7700(5) = CH4_density
Alias LI7700(6) = CH4_mole_fraction
Alias LI7700(7) = Temperature
Alias LI7700(8) = Pressure
Alias LI7700(9) = RSSI
Alias LI7700(10) = Drop_rate
Alias LI7700(11) = Aux(8)
Alias LI7700(19) = TC(3)
Alias LI7700(22) = DATA_checksum
Alias diag_bits(1) = box_connected
Alias diag_bits(2) = bad_aux_tc3
Alias diag_bits(3) = bad_aux_tc2
Alias diag_bits(4) = bad_aux_tc1
Alias diag_bits(5) = motor_failure
Alias diag_bits(6) = calibrating
Alias diag_bits(7) = bottom_heater_on
Alias diag_bits(8) = top_heater_on
Alias diag_bits(9) = pump_on
Alias diag_bits(10) = motor_spinning
Alias diag_bits(11) = block_tmpr_unregulated
Alias diag_bits(12) = laser_tmpr_unregulated
Alias diag_bits(13) = bad_tmpr
Alias diag_bits(14) = ref_unlocked
Alias diag_bits(15) = no_signal
Alias diag_bits(16) = not_ready

Units milliseconds = ms
Units seconds = s
Units nanoseconds = ns
Units CH4_density = mmol/m^3
Units CH4_mole_fraction = umol/mol
Units Temperature = C
Units Pressure = kPa
Units RSSI = %
Units Drop_rate = %
Units TC() = C

Dim socket As Long
Dim DATA_string As String * NBE

Appendix B: Example CRBasic program for polled data collection. The example code can be copied and pasted di-
rectly into CRBasic, and should compile correctly for both the CR1000 and CR3000.

Dim NBR As Long ‘Number of bytes returned in DATA_string
Dim checksum_datalogger
Dim checksum_flag As Boolean
Dim diag_work As Long
Dim n

DataTable (Ethernet_data,TRUE,-1)
 DataInterval (0,0,Sec,100)
 Sample (3,milliseconds,Long)
 Sample (19,Diagnostic,IEEE4)
 Sample (1,checksum_datalogger,IEEE4)
EndTable

DataTable (Diagnostic_flags,TRUE,-1)
 DataInterval (0,Output_interval,Min,100)
 FieldNames (“nnd_7700_Tot”)’No new data (sensor not connected or powered)
 Totalize (1,n,IEEE4,NBR<>0 IMP checksum_flag)
 FieldNames (“checksum_err_7700_TOT”)’Checksum error
 Totalize (1,n,IEEE4,checksum_flag IMP NOT (box_connected))
 FieldNames (“box_connected _TOT”)’LI-7550 connected or not
 Totalize (1,n,IEEE4,checksum_flag IMP NOT (bad_aux_tc3))
 FieldNames (“bad_aux_tc3_TOT”)’Bad reading at TC3
 Totalize (1,n,IEEE4,checksum_flag IMP NOT (bad_aux_tc2))
 FieldNames (“bad_aux_tc2_TOT”)’Bad reading at TC2
 Totalize (1,n,IEEE4,checksum_flag IMP NOT (bad_aux_tc1))
 FieldNames (“bad_aux_tc1_TOT”)’Bad reading at TC1
 Totalize (1,n,IEEE4,checksum_flag IMP NOT (motor_failure))
 FieldNames (“motor_failure_TOT”)’Mirror spin motor failure
 Totalize (1,n,IEEE4,checksum_flag IMP NOT (calibrating))
 FieldNames (“calibrating_TOT”)’Calibration routine enabled
 Totalize (1,n,IEEE4,checksum_flag IMP NOT (bottom_heater_on))
 FieldNames (“bottom_heater_on_TOT”)’Bottom mirror heater on
 Totalize (1,n,IEEE4,checksum_flag IMP NOT (top_heater_on))
 FieldNames (“top_heater_on_TOT”)’Top mirror heater on
 Totalize (1,n,IEEE4,checksum_flag IMP NOT (pump_on))
 FieldNames (“pump_on_TOT”)’Washer pump activated
 Totalize (1,n,IEEE4,checksum_flag IMP NOT (motor_spinning))
 FieldNames (“motor_spinning_TOT”)’Bottom mirror spinning
 Totalize (1,n,IEEE4,checksum_flag IMP NOT (block_tmpr_unregulated))
 FieldNames (“block_tmpr_unregulated_TOT”)’Block temp not at set point
 Totalize (1,n,IEEE4,checksum_flag IMP NOT (laser_tmpr_unregulated)))
 FieldNames (“laser_tmpr_unregulated_TOT”)’Laser temp not at set point
 Totalize (1,n,IEEE4,checksum_flag IMP NOT (bad_tmpr))
 FieldNames (“bad_tmpr_TOT”)’Bad TC in optical path
 Totalize (1,n,IEEE4,checksum_flag IMP NOT (ref_unlocked))
 FieldNames (“ref_unlocked_TOT”)’Reference signal not line locked
 Totalize (1,n,IEEE4,checksum_flag IMP NOT (no_signal))
 FieldNames (“no_signal_TOT”)’No laser signal detected
 Totalize (1,n,IEEE4,checksum_flag IMP NOT (not_ready))
 FieldNames (“not_ready_TOT”)’LI-7700 not ready
EndTable

BeginProg
 TCPClose (101)
 n = 1
 Scan (Scan_interval,mSec,300,0)
 SerialInRecord (socket,DATA_string,&h44,0,&h0A,NBR,01)
 SerialOutBlock (socket,”<licor><li7700><cmd><poll>true</poll></cmd></li7700></
licor>”+CHR(10),61)

 SplitStr (LI7700_time(1),DATA_string,CHR(09),3,4)
 SplitStr (LI7700(1),DATA_string,CHR(09),22,4)
 checksum_flag = (DATA_checksum EQV (CheckSum (“D”&DATA_string,7,NBR-2)))
 checksum_datalogger = CheckSum (“D”&DATA_string,7,NBR-2)

 ‘Break up the Diagnostic into 16 separate bits.
 If ((NBR <> 0) AND (checksum_flag)) Then
 diag_work = Diagnostic
 box_connected = diag_work AND &h0001
 bad_aux_tc3 = diag_work AND &h0002
 bad_aux_tc2 = diag_work AND &h0004
 bad_aux_tc1 = diag_work AND &h0008
 motor_failure = diag_work AND &h0010
 calibrating = diag_work AND &h0020
 bottom_heater_on = diag_work AND &h0040
 top_heater_on = diag_work AND &h0080
 pump_on = diag_work AND &h0100
 motor_spinning = diag_work AND &h0200
 block_tmpr_unregulated = diag_work AND &h0400
 laser_tmpr_unregulated = diag_work AND &h0800
 bad_tmpr = diag_work AND &h1000
 ref_unlocked = diag_work AND &h2000
 no_signal = diag_work AND &h4000
 not_ready = diag_work AND &h8000
 Else
 Move (milliseconds,3,-99999,1)
 Move (LI7700(1),21,NaN,1)
 Move (diag_bits(1),16,TRUE,1)
 EndIf

 CallTable Ethernet_data
 CallTable Diagnostic_flags
 NextScan

SlowSequence
 Scan (5,Sec,3,0)
 tcpip_socket_status = SerialInChk (socket)

 If (tcpip_socket_status = -1) Then
 socket = TCPOpen (“172.24.23.61”,7700,Buffer_size)
 EndIf
 NextScan

4647 Superior Street • P.O. Box 4425 • Lincoln, Nebraska 68504
North America: 800-447-3576 • International: 402-467-3576 • FAX: 402-467-2819
envsales@licor.com • envsupport@licor.com • www.licor.com

In Germany – LI-COR GmbH:
+49 (0) 6172 17 17 771 • envsales-gmbh@licor.com • envsupport-gmbh@licor.com

In UK, Ireland, and Scandinavia – LI-COR Biosciences UK Ltd.:
+44 (0) 1223 422102 1 • envsales-UK@licor.com • envsupport-UK@licor.com

All trademarks and registered trademarks
are property of their respective owners.

979-11300 05/10

