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The Delta is a Vulnerable Peatland Ecosystem via
Drainage and Severe Land Subsidence
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Figure 2. Conceptual diagram illustrating evolution of Delta islands due to levee construction and
island subsidence. Maodified from Ingebritsen et al. (2000).




Delta Peatland is Subsiding!
Landscape is Vulnerable to Flooding by Levee Failure;
Its Collapse would Shut-Down California’s
Water Conveyance System




New Plans to Abate or Reverse Subsidence with Carbon Farming:
Restored Tule Wetlands and Rice on
Twitchell and Sherman Islands

What are the: Cost/Benefits?; Unintended Consequences?



What Are the Trade-Offs?

Annual Methane Emission Scales with Net Primary Productivity of
Wetlands, Natural and Managed

* In Wetlands, Large Carbon Uptake is Associated with Large
Methane Losses
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Methane Fluxes Travel by Multiple Routes:
Need Eddy Covariance Measurements to Assess Fluxes Across a
Spectrum of Time and Space Scales, without Sampling Artifacts
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There Has Been A Revolution
in Stable, Precise, Accurate and Low Power
Fast Response Methane Sensors




Eddy Covariance Flux Method
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New Generation of Open-Path, Low Power, Laser
Spectrometers allow us to Measure Methane Fluxes
Continuously and where Methane is Being Produced,

in Remote Wetlands



Big Ideas/Concepts to Explore

What are the Seasonal and Annual Sums of Methane
Emission?

— How do they Vary with Weather/Climate, Plant Traits and
Depth/Temperature/Chemistry of the Water?

What are the Links between Photosynthesis and
Methane Emissions, on short and long time scales?

How Do Methane Fluxes Change with Time since
Disturbance?

— How to Minimize Methane Fluxes with Ecological
Restoration of Wetlands?

— How to Manage Rice to Minimize Methane Emissions?



Outline

Experiences with Open and Closed Path Methane
Sensor performance

Experiences with Eddy Covariance Flux
Measurements of Methane and CO, under
Natural (tidal wetland), Disturbed (pasture, rice
and corn), and Reclaimed (restored wetlands)
conditions

Demonstrate the Use of Multiple Flux Towers,
Flux Footprint Modeling and Remote Sensing to
Quantify Spatial Variation in Fluxes in a Wetland
Mosaic



Delta Field Sites

Legend
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Six Contrasting Study Sites

-

-

Drained Peatland
Pasture, BAU Corn, BAU

Seasonally-Flooded, Rice,

Newly Restored, Wetland 15+ Year Old, Agricultural Option

Restored Wetland



Pilot Study:
C Flux Measurements on Natural Tidal Wetland




SCIENCE, RESULTS and DISCUSSION




CoSpectra Open Vs Closed Path Methane Sensors
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Density Corrections Open Vs Closed Path Methane Sensors
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Open vs Closed Path Methane Sensor Flux Measurements

1322 M. Detto et al. / Agricultural and Forest Meteorology 151 (2011) 1312-13X4
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Google earth

Natural Tidal Wetland

mayberry fluxtower &

Newly Restored Wetland



Wetland Vs Drained Peatland Pasture

Sherman Island, D 98-168, 2010
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Flooding Inhibits Nocturnal Respiration and Daytime Photosynthesis,
Compared to the Drained Peatland.



Methane from a Tidal vs Non-Tidal and Restored Wetland
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Twitchell Island

Google earth

Old Wetland, Pilot Project, USGS

mayberry fluxtower &

Newly Restored Wetland Rice
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Mean Diurnal Pattern of CO, Exchange, Summer 2012
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Old Wetland, Favorable Windds
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Newly Restored Wetland
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Carbon Sink Strength of Wetland Increases with Time since Restoration

C Fluxes Depend on Percent of Open Water in Fetch

Newly Restored Wetland
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Feps (Mg C-CH, m? d™?)

Much Year to Year Variability in Methane Lost by Rice
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One Year of Methane Flux Measurements
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Carbon Budget
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How Well Does Carbon Uptake Modulate Methane Emissions, in General?
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Does Photosynthesis Prime Methane Production in Rice?

Diurnal pattern during rice growing season
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Methane scales with Photosynthesis

i CH q flux causality: GEP CH i flux causality: Soil temperature
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Low O, in Water Promotes High Methane Fluxes

400 : :
e older wetland
350+ +  restored wetland ||
rice
300 o |
..
— °
'v 250+e 8 i
o '.o“ °
= <
)
© 200" * |
= ° °
c : °
5 150% MR |
LL [ ] °
[ ] ...
o
100 - : . L + |
+
RS s
% T T
n + o |
50 Q@t TR
. T %ﬁ F A #ﬁ+++ -+ +
T s P tﬁ T
0 | | | | |
0 1 2 3 4 5 6 7 8

DO water, mg/L

Daily Averages



Windy Region, Open Water is Well Oxygenated
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Newly Restored + Older Wetland + Rice
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Shallow Water (< 10 cm) under Rice is Warmer, More Convective and more Oxygenated,
Inhibiting Methane Loss compared to non-Tidal, Older Wetland
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Spatial Upscaling in Complex Mosaics
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Wetland Restoration Project, Mayberry Slough



Partition Methane Fluxes According
to Water and Vegetation Fractions

f +F f

water ' water veg ' veg

FCH4 =F

One Equation and Two Unknowns

Deploy a Second Flux Tower over Different Water/Vegetation Fraction
And Assess Fraction of Water and Vegetation in Flux Footprint with
Remote Sensing and Solve for
F and F,

water



Anchor and Roving Flux Towers

Soccer/Flux Mobile

Restored Wetland, Mayberry Ranch on Sherman Island
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Fluxes Vary by Wind Direction and Tower Location
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Different Vegetation/Water Footprints Across Landscape

Diaytime cimabological Tootpiinks
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Perimeter of Vegetation Patches and Veg Fraction Affects
Variability and Magnitude in Methane Fluxes
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Concluding Remarks

e Methane Emissions at Highly Productive,
Restored Wetlands, in California, are
Extremely High

e Methane Emissions from Restored Wetlands
Increase with Time

e Spatial Scaling Depends on Vegetation
Fraction and Size of Patches

— Accurate Flux Footprint Models are Key towards
Interpreting Methane Fluxes
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CO, flux (g-C m 2 d™)
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CO, flux (g-C m2d™)
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Days 200 to 250, 2012
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