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Up	to	8	m	of	soil	
lost	

•  100+	yr	loss	of	~	1	Pg	of	C	
•  Water	Source	and	Conduit	for	20+	million	Californians	

PEAT	SOIL	>18m	

USGS	

The	Problem:	OxidaOon	and	Subsidence	of	Peatland	



Solidarity.org	

Can	We	Re-Convert	the	Land	to	a	Carbon	Sink	by	Replacing	Agriculture	with	Restored	Wetlands?	
What	are	the	Unintended	Costs	of	Flooding	the	Land,	in	terms	of	Greenhouse	Gas	producOon?	
Can	We	EsOmate	Net	Carbon	Fluxes	with	Simple	Models	and	Inputs?	

SoluOon:	Restore	Wetlands,	Sell	Carbon	Credits	to	Cap	and	Trade	Markets	



Use	Science	to	BeIer	Inform	Policy	and	Societal	AcOons	

Approach:		Measure	and	Model	Greenhouse	Gas	Fluxes	to	Assess		
Efficacy	of	Land	Use	Change	and	Unintended	Consequences	



Outline


• Test	the	Performance	of	a	Hierarchy	of	Simple	to	Complex	
CO2	and	CH4	Flux	Models	for	Applied	and	Basic	Problems	and	
QuesOons		

• Deconstruct	Model	Performance	for	the	Plant	and	Soil	
Compartments	

• Use	Emerging	Math	Methods	to	Discover	New	InformaOon	in	
our	Data	about	Covariances,	Leads/Lags	and	Pulses	between	
Fluxes	and	Biophysical	Variables	across	a	Spectrum	of	Time	
Scales	

• Guide	to	Future	Model	EvoluOon	



Field sites


San Francisco Estuary Institute-Aquatic 
Science Center, 2012 

Venue:	UC	Berkeley	Meso-Network	of	Eddy	Covariance	Flux	StaOons	



Models	Used	
• Dynamics	Pool	Models	

•  Fit	parameters	with	Flux	measurements	and	Bayesian	StaOsOcs	to	produce	
simple	models	for	assessment	of	Greenhouse	Gas	Budgets	for	Carbon	
Markets	

• Process-Based	and	MechanisOc	Biophysical	Models,	CANVEG	
•  Understand	the	fundamental	processes	ModulaOng	C	Exchange	of	Plant	and	
Soil	Compartments	Fluxes	

•  Predict	future	fluxes	
•  StaOsOcal/Empirical	Models	

•  ArOficial	Neural	Networks	(ANN)	to	Gap	Fill	Flux	Data	and	Compute	Daily	and	
Annual	Integrals	

•  Mutual	InformaOon	Theory,	Granger	Causality	and	ArOficial	Neural	Networks	
to	discover	ModulaOon	of	Fluxes	by	Biophysical	Variables	at	Different	Time	
Scales	(hourly,	daily,	weekly,	seasonal,	annual),	Roles	of	Non-Linear	
InteracOons	and	Leads	and	Lags	



PEPRMT	Model:	Soil	Fluxes	are	Coupled	to	Plants	

Oikawa	et	al.	in	prep,	JGR	Biogeosci	
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Premise:	Ecosystem	RespiraOon	Scales	Tightly	with	Ecosystem	Photosynthesis	

espm	228	2016	4/1/16	



Key Algorithms
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•  Light	Use	Efficiency	Model	for	Photosynthesis	

•  Boltzmann	FuncOon	for	Temperature	KineOcs	

•  Michaelis-Menten	Enzyme	KineOcs	for	
RespiraOon	and		
•  Methane	ProducOon	and	OxidaOon	
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Model Data Fusion


•  Search	Parameter	space	with	Markov	Chain	Monte	Carlo	(MCMC)	approach	with	a	
delayed	rejecOon	adapOve	Metropolis-HasOngs	algorithm	

1, 2 1 2 1 2( | , ) ( | , , ) ( ) ( )p x y p y x p pθ θ θ θ θ θ∝ ⋅ ⋅

Bayes	Theorem	

Likelihood,	Data	model	 Priors,	Parameter	Model	Parameters,	given	data	

Zobitz,	J.	M.,	et	al.	2011.	A	primer	for	data	assimilaOon	with	ecological	models	using	Markov	Chain	Monte	Carlo	
(MCMC).	Oecologia	167:599-611.	

Likelihood	FuncOon	



Oikawa, Knox et al. (in revision) Global Change Biology 

Model	Performance:		
CO2	Exchange	of	Restored	Wetland	

Oikawa	et	al.	JGR,	to	be	submiIed	



Modeling wetland GHG fluxes 

Oikawa, Knox et al. (in revision) Global Change Biology 

Model	Performance:		
CH4	Exchange	of	Restored	Wetland	

Oikawa	et	al.	JGR	to	be	submiIed	



DeconstrucOng	the	Model	

• Model	and	Measure	Photosynthesis	
• How	Much	Detail	in	the	Model	
• PotenOal	Biases	and	Errors	in	Canopy	Photosynthesis	
Measurements	

• Soil	RespiraOon	and	Methane	ProducOon	
• Roles	of	Water	Table,	Photosynthesis	and	Temperature	

hIp://andrewholder.net/wp-content/uploads/2013/12/deconstrucOon.jpg	



Upscaling	Photosynthesis:	
	

Light	Use	Efficiency	and	Gross	Primary	ProducOvity	

( )kGPP LUE APAR f T= ∗ ∗
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Baldocchi,	1994,	AgForMet	

Simple	Systems,	Light	AbsorpOon	Explains	over	80%	of	Variance	in	CO2	Exchange!;	
Basis	for	Satellite	Remote	Sensing	of	Global	Photosynthesis	



Digital	Cameras	Provide	InformaOon	on	Dynamics	of	VegetaOon	Indices	

​𝐹𝑃𝐴𝑅=0.95(1− ​exp⁠(−𝑘∗𝐿𝐴𝐼) )	



NEE = α ⋅PPFD ⋅GPPmax
α ⋅PPFD+GPPmax

−ER

GPP = ε ⋅ a0 + a1VI( ) ⋅PAR

EsOmate	GPP	with	VegetaOon	Index	InformaOon	from	Digital	Cameras	(RGB)	

Knox	et	al.	in	prep	



Meteorological and Plant inputs
Rg,Lin, Ta, qa, [CO2], u, P, ppt, β, Vcmax

LAI, h, d,l, zo

Stomatal 
Conductance

=
f(A,Ci,Tl,θ)

LongwaveRadiative 
Transfer:

f(Tl,IRup,IRdn,ε)

Leaf Energy 
Balance:
H, λE, Tl

Leaf Photosynthesis 
and Respiration:

f(gs, Tl,Ci, gb, Qpar)

Source/Sinks:
ST,Sq,SC

Scalar 
Profiles:

T,q,C

Radiative Transfer:
Qpar,Rnir
f(ρ,τ,β)

Boundary Layer 
Conductance=

f(u,l)

CANVEG,	MulO-Layer,	coupled	photosynthesis-stomatal	conductance-energy	balance	model	

Inputs:	Meteorological	CondiOons,	Leaf	Area	Index,	Vcmax;	
No	Tuning!	



Latent	Heat	and	Net	Ecosystem	Carbon	Exchange	



4/1/16	

Canopy	Photosynthesis,	A,	given	Meteorology,	LAI	and	Vcmax	
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RespiraOon	

Photosynthesis	

Baldocchi	and	Sturtevant,	2015,	AgForMet	

Do	We	Trust	Canopy	Photosynthesis	Test	Data?	

Can	We	Extrapolate	Night	
RespiraOon	to	Day	as	
FuncOon	of	Temperature?	
	
Is	Dark	RespiraOon	
Inhibited	in	Light	due	to	
Kok	Effect?	



rsc =
−z 'z '

(x ' x '+ z 'z ')1/2 (y ' y '+ z 'z ')1/2

An	ArOfact	of	Spurious	CorrelaOon	Among	NEE,	GPP	and	Reco?	
	
Closure	Problem	of	One	EquaOon	and	Two	Unknowns	

rsc	=	-0.157	

Baldocchi	and	Sturtevant,	2015	AgForMet	
4/1/16	

alfalfa	

𝑁𝐸𝐸=𝐺𝑃𝑃+𝑅𝑒𝑐𝑜	

CorrelaOon	using	Day/Night	Sampling	

G = NEEday − Reco,day = x − z
R = NEEnight + Reco,day = y + z

Self	correlaOon	



Close	System	of	EquaOons	with	New	and	Independent	InformaOon	from	13C	

𝑁𝐸𝐸=𝐺𝑃𝑃+𝑅𝑒𝑐𝑜	

Eddy	covariance	(1	Hz)	with	closed	path	CO2	isotope	analyzer	
CCIA-48	Los	Gatos	Research	
	
Mid	infrared	quantum	cascade	laser	with	high	precision	
	
δ13C:		0.7	per	mill,	13CO2:	2	ppb	

13 13( )r eco aisoflux C R C GPPδ δ= ⋅ + −Δ ⋅

Bowling	Method	
Fluxes	of	the	stable	isotope	13CO2	



Method	 GPP		

cumula@ve								

(g	CO2-C	m-2)	

Isotope	 -190	±	5	

ANN	 -210	±	4	

Reichstein	 -213	±	5	

Oikawa	et	al.	in	prep	for	Ag.	Forest	Met.	

Tests	of	Three	Ways	to	ParOOon	NEE	into	GPP:	
Methods	~	are	Intercomparable	

Alfalfa,	Summer,	2015	



-  ConOnuous	Soil	CO2	Efflux	Measurement	Systems	

-  Profile	method	(n=2)	

-  Forced	diffusion	chamber	(n=1)	

	

Gore-Tex 

ConOnuous	Soil	RespiraOon	



Method	 Reco	cumula@ve		

(g	CO2-C	m-2)	

Isotope	 115	±	5	

ANN	 132	±	3	

Reichstein	 135	±	5	

Rsoil	 108	±	5	

Measured	and	Modeled	CO2	Efflux	Data	are	Intercomparable	

Oikawa	et	al.	in	prep	for	Ag.	Forest	Met.	



New	Math	to	Look	at	Cause	and	Effect	

• ArOficial	Neural	Networks	
• Granger	Causality	
•  Transfer	Entropy		
•  Shannon	Entropy	
• Mutual	InformaOon	Theory	

espm	228	2016	4/1/16	



hIp://media.developeriq.in/images/neurons1.png	

ArOficial	Neural	Networks		

Cancer	
Volume	91,	Issue	S8,	pages	1615-1635,	17	APR	2001	DOI:	10.1002/1097-0142(20010415)91:8+<1615::AID-
CNCR1175>3.0.CO;2-L	
hIp://onlinelibrary.wiley.com/doi/10.1002/1097-0142(20010415)91:8%2B<1615::AID-CNCR1175>3.0.CO;2-L/full#fig5	



ESPM	228	Adv	Topic	Micromet	&	Biomet	

Neural	Network	CO2	Fluxes	(Fc)	vs	Measurements	

Inputs:	
	
TA	
PAR	
VPD	
WT_gf	
ustar	
Mdate	



Pairwise 
Stepwise	
Linear 

Neural	
Network 

	 r2 r2 AIC r2 AIC 
Growing	season 	 	 	 
2009-2015 GEP 0.622 0.386 2853 0.258 7704 

WTD 0.575 0.424 2793 0.462 7431 
ER 0.168 0.458 2737 0.713 6853 
LE 0.452 0.469 2718 0.751 6716 
u* 0.147 0.470 2718 0.765 6671 
Ta 0.309 0.471 2717 0.814 6462 
Ts 0.195 0.474 2712 0.825 6420 

Biophysical	Controls	on	Methane	Fluxes	

Knox	et	al	in	press	JGR	Biogeoscience	

Neural	Network	Explains	82%	
of		variance	in	Methane	

Fluxes	



Hatala	et	al.	GRL	2012	

Photosynthesis	Primes	Methane	Produc@on	in	Rice,	which	Leads	Temperature	

espm	228	2016	4/1/16	



Granger causality: !
A measure of coupling with explicit time directionality!

Compare the bivariate model:"

To the univariate case: "

Calculate G-causality: "

No interaction, G ≈ 0"
Interaction, G > 0"

Detto et. al., Am. Nat. [2012]"
Geweke, JASA [1982]"
Dhamala, Phys. Rev. Lett. [2008]"
Chen, J. Neurosci. Meth. [2006]"

23!

A	variable,	x,	Granger	Causes	
y	if	the	bivariate	equaOon	outperforms	
The	univariate		

espm	228	2016	4/1/16	



Methane	scales	with	Photosynthesis,	beRer	than	Temperature	

Hatala	et	al.	GRL	2012	
espm	228	2016	4/1/16	
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Shannon	Entropy	

4/1/16	



Sturtevant	et	al.	2016	JGR	Biogeoscience	

RelaOve	InformaOon	on	CO2	Flux	

4/1/16	



Summary


• With	a	Suite	of	Models	and	MathemaOcal	Tools	We	Can	Deduce	the	
Roles	of	Biophysical	Drivers	on	Greenhouse	Gas	Fluxes	across	as	
Spectrum	of	Time	Scales	

•  Simple	Models	have	PotenOal	for	Being	Used	to	Inform	on	Net	
Carbon	Balances	for	Cap	and	Trade	Markets	based	on	Simple	Inputs	
like	Meteorological	CondiOons	and	Canopy	Greeness	

•  Tests	of	Canopy	Photosynthesis	Measurements	based	on	CanVeg	
Model,	Stable	Isotopes	and	ConOnuous	Soil	RespiraOon	
Measurements	Increase	our	Confidence	on	Flux	ParOOoning	Methods	
at	these	Sites	



Over Arching Ideas


•  You	GoIa’	Get	Photosynthesis	Right	if	You	Want	to	Simulate	the	Dynamics	
Rest	of	the	C-Related	Pools,	Processes	and	Fluxes	

•  Soil	Trace	Fluxes	(CO2	and	Methane)	are	Tied	to	Recent	Photosynthesis	
•  Old	paradigm	was	simple	funcOons	dependent	upon	soil	temperature,	soil	moisture	
and	water	table	

•  Tying	a	Methane	Emission	Model	to	a	Simple	Photosynthesis	model	has	
Merit		

•  ValidaOng	Canopy	Photosynthesis	Model	depends	upon	how	well	we	can	
extract	informaOon	on	GPP	from	NEE	

•  New	StaOsOcal	Model	shows	Spurious	CorrelaOon	is	Small	
•  New	Stable	Isotope	Flux	Measurements	confirm	Validity	of	Standard	Flux	
ParOOoning	





PEPRMT:	Peatland	Ecosystem	Photosynthesis,	RespiraOon,	and	
Methane	Transport	Model	



Model-data	fusion	
Markov	Chain	Monte	Carlo	(MCMC)	approach	with	
adapOve	Metropolis-HasOngs	algorithm	

PEPRMT	Model	

J	=	data-model	mismatch	
y	=	observed	flux	
p	=	modeled	flux	
σ	=	uncertainty	in	the	observed	flux	(gap-filling	+	random	error)	
	



Oikawa	et	al.	submi=ed	GCB	



Parameteriza@on	
(g	CO2-C	m-2)	

Valida@on	
(g	CO2-C	m-2)	

Obs	 -	931	±	202		 -	290	±	134		
Model	 -	778	±	152		 -	329	±	105		

Oikawa	et	al.	submi=ed	GCB	



Oikawa	et	al.	submi=ed	GCB	



Parameteriza@on	
(g	CH4-C	m-2)	

Valida@on	
(g	CH4-C	m-2)	

Obs	 48	±	6		 40	±	4	
Model	 41	±	3	 40	±	3	

Oikawa	et	al.	submi=ed	GCB	





40%	of	water	used	in	the	Peninsula	and	SF	is	from	the	Delta	 Forcechange.com	valleywater.org	

Venue: the Sacramento-San Joaquin River Delta  



espm	228	2016	

In frequency (f) domain: "
No interaction, G ≈ 0"
Interaction, G > 0"

Sxx(f) = power spectrum of x at frequency f"
Γ = error covariance matrix of the bivariate model"
H = transformation matrix from writing model in Fourier space!

Can	Be	Expressed	in	Spectral	Domain	

4/1/16	



Soil Respiration, F = 3 µmol m-2 s-1

CO2 (ppm)
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Using	Models	to	Design	Soil	RespiraOon	Studies	



Input	dataset	

Output	

Input	layer	

Hidden	layer	

Output	layer	
=	node	or	unit	
=	connecOon	

Input	and	Output	database	

ValidaOon	set	

Training	set	

Test	set	

Used	to	assess	the	connecOon	weights	
Used	to	

evaluate	the	
errors	

Trained	ANN	

Used	to	
evaluate	the	
trained	ANN	

Ar<ficial Neural Networks training


Slide courtesy of  D Papale



