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Topics 
 

Concepts, 1 
1.  Evaporation 
2.  Potential Evaporation 
3. Equilibrium Evaporation 
4. Transpiration 
5. Dew, Condensation, Distillation 

 
 
Modeling Approaches 

A. Bowen Ratio 
B. Thornthwaite Equation 
C. Penman’s Combination Equation 
D. Penman Monteith Equation 
E. Isothermal Energy Balance 
F.  Equilibrium Evaporation 
G.  Priestly-Taylor Equation 

 
Concepts, 2 

1. Canopy conductance 
2. Coupling Theory, Canopy Scale 
3. Sensitivity and Feedbacks 
 

 
L33.1. Introduction 
 
Evaporation is the “physical process by which a liquid or solid is converted to a gaseous 
state” (Glossary of Meteorology). 
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Plant canopies introduce water vapor into the atmosphere via transpiration and the 
evaporation of water from the soil and free water on the leaves and stems.   Some 
scientists call the summed rate evapotranspiration.  
 
This field has a long and rich history with over 7000 peer-reviewed articles identified on 
the web of science, circa 2008. 
 
Different and opposing views have been used historically to define evaporation (Jarvis 
and McNaughton, 1986).  Meteorologists argue from the thermodynamic viewpoint that 
energy is required to drive the latent heat of vaporization.  Evaporation also causes the 
surface and surrounding air to cool, which condensation releases heat.  Physiologists 
counter that evaporation is driven by a potential difference between the humidity of the 
surface and the free atmosphere.  The problem these opposing arguments is that they are 
valid for the scale at which they were defined and applied.  We will see later how to 
derive a more general equation for evaporation. 
 
Potential Evaporation 
 
Potential Evaporation is: 
 

“the evaporation from an extended surface of a short grass that is 
supplied with water and the canopy covers the ground 
completely.”  

 
 The original assumption is that potential evaporation cannot exceed evaporation from a 
free water surface.   Several problems arise with this definition. In Davis, Potential 
evaporation may be only 80% of pan evaporation. In Nebraska, PET can exceed pan 
evaporation.  Hence, free water evaporation may not represent the maximal rate in a 
region. 
 
The surface area of transpiring leaf area exceeds the surface area of a water body, as an 
evaporation pan.  Water is partially transparent to sunlight and stores heat energy.  So the 
energy available to evaporate water will be different than that used to evaporate water 
from the land surface.  Evaporation pans are also subject to error due to the oasis effect 
and from animals drinking from it. 
 
Actual Evaporation 
 
Over the years numerous environmental factors have been correlated with evaporation.  
They include the vapor pressure of the air, which is a function of temperature, wind 
speed, solar radiation. Plant factors affecting evaporation include stomatal conductance 
and leaf area index . Surveys on modeling evaporation have been produced by Brutsaert 
(Brutsaert, 1982), Shuttleworth (Shuttleworth, 2007), Monteith (Monteith, 1981), 
Rosenberg et al (1968), Rana and Katerji (Rana and Katerji, 2000) Raupach (Raupach, 
2001), among others. 
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1. Aerodynamic Approach 
 
Theories on evaporation go as far back as Aristotle, who recognized the power that sun 
and wind have on evaporating water from puddles and ponds.  Dalton’s (1801) 
experiments demonstrated that evaporation from warm water was a function of the vapor 
pressure of the liquid and that of the air, as determined from the dew point temperature.  
He derived an empirical equation for evaporation 
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f(u) is an empirical wind speed function. 
 
If we express Eq.1 using an electrical analog, where the aerodynamic resistance Ra is 
used to evaluate the wind speed function and the vapor pressure deficits are expressed in 
terms of vapor concentration then: 
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2. Energy Balance Approach 
 
The surface energy balance contains a term for latent heat exchange.  From the view 
point of simple algebra one can arrive at a simple equation for evaporation from the net 
radiation budget. 
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We can also examine the energy balance between available energy (A) and how it is 
partitioned into H and E. 
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Dividing both sides of the equation by E produces 
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If the partitioning of energy is conserved, we defined by the Bowen ratio, 
H

E



  

 
We can re-express the equation for latent heat exchange 
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Similarly, one can use the same logic to define an equation for H. 
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When this relation was first derived by Bowen, it was assumed that  was constant.   
Today we know this is not true, but we can still utilize this relationship by measuring the 
Bowen ratio with temperature and humidity gradients. 
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Where the psychrometeric constant is defined as: 
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At 20 C the psychrometric constant is 67 Pa K-1. 
 
But this relation assumes that the sources and sinks of heat and water vapor are identical, 
as when vapor may originate from vegetation and heat from the hot soil underneath an 
open and sparse canopy.  A second example is when there is advection of heat or 
moisture, such as at the transition between desert and an irrigated crop or a lake and 
rough forest. 
 
Under many circumstances, like tall forests or open canopies, the eddy exchange 
coefficients for momentum, heat and water vapor transfer differ (Thom et al., 1975), as 
can be shown with the correlation between q and T fluctuations differ from one.  Hence 
the Bowen ratio version of the equation for latent heat exchange should be modified 
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If the sources and sinks of heat and vapor are co-located the ratio of the eddy exchange 
coefficients will approach unity and fluctuations in temperature and humidity will be 
highly correlated.  We see this to be true over a transpiring wheat crop. 
 
Many workers, however, show cases where KT > Kq.  Others, including Verma et al  at 
Mead, NE found Kq > Kt for numerous studies using independent measurement methods.  
When Kt < Kq , as within an advective inversion, large scale eddies bring in air from 
above with different temperature and humidity profiles (Lang et al., 1983). 
 
Sometimes CO2 is used to evaluate eddy exchange coefficients. The following case 
shows how the role of separated sources and sinks can cause Reynold’s analogy to fail. 
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Figure 1 Calculations of eddy exchange coefficients for CO2 and water with equal and separated 
sources and sinks  

 
 
The Bowen ratio has some biophysical relevance.  Stewart and Thom (Stewart and Thom, 
1973)  defined a relation for Bowen ratio as a function of the surface’s resistances. 
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An oceanic climate will have a smaller climatological resistance than a continental 
climate. Hence we should expect the Bowen ratio of England to differ than that of Iowa 
(Jarvis and McNaughton, 1986). 
 
New Concepts 
 
Often scientists want to compute daily average evaporation fluxes from mean daily 
meteorological variables.  But a mathematically-averaged Bowen ratio produces a biased 
and nonsensical value, since it is weighted towards high values when the sun is low and 
evaporation rates are low.  To get a representative value to apply to daily average 
available energy one should flux weighted the Bowen Ratio 
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Consider the data in the following figure.  This is a daily course of  for a grassland.  The 
arithmetic average is –2.58, while the flux weighted average is 0.84.  
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Figure 2 Grassland, D129, 2001 

 
As we see in the following figure little evaporation occurs at night, so we don’t want to 
weight this information 
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Thornthwaite Equation 
 
At mid Century, numerous investigators were trying to define a way to compute 
evaporation.  Thornthwaite (Thornthwaite, 1948) developed a relation that evaluated 
monthly potential evaporation as a function of temperature (cm per month) and day 
length. 
 

1.6 (10 )
12 30

aL N T
E

I
  

 
L is daylength in hours 
N is number of days in a month 
T is mean monthly air temperature 
I is a heat index, computed as a function of the sum of 12 monthly temperature indices, i 
 

i T ( / ) .5 1 514  
 
The exponent, a, is a function of I. 
 
a I I I       6 75 10 7 71 10 179 10 0 497 3 5 2 2. . . .  
 
The method has many shortcomings.    Evaporation and temperature are out of phase with 
one another.  It has no physiological feedback and could not be applied to short term 
studies, as temperature is not a suitable proxy for radiation on such time scales.  
 
Nevertheless, the method has found much favor by biogeographers (Rosenzweig, 1968) 
trying to forge correlations between plant distributions and water balances.  Yet, this is 
where one should be cautious and where one could us modern evaporation theory to 
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refine some of the biogeography maps on plant distribution based on climate.  Scientists 
like Roderick (Roderick et al., 2009) argue it should not be used at all, and I agree. 
 
Penman Equation 
 
In the late 1940’s H.L. Penman (Penman, 1948) recognized the weakness of the 
Thornthwaite approach.  He consequently developed a relation that had a physical basis.  
In 1948 he derived the famous Penman equation: 
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The rate of evaporation for free open water (Eo) is: 
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which is a function of the radiation balance over open water. In this version the humidity 
deficit is in terms of millibars and wind is in terms of wind run, kilometers per day 
(measured at 2 m). 
 
Penman’s equation gained early popularity as it relied on simple meteorological 
variables.  It also produce accurate estimate of evaporation across England.  
Unfortunately, Rnet was rarely measured in early days, so it was evaluated by empirical 
relation to solar radiation. To apply the relation over vegetation one computed potential 
evaporation: 
 

0pE fE  

 
Developed in England, f was about 0.8 for summer and 0.6 for winter.  The relation had a 
15% error in temperate climates (see Rosenberg et al.) 
 
 
This equation ignores heat storage and advection and crop water status. 
 
In applications like agriculture and irrigation management, practitioners compute a 
reference and potential evaporation rates and then adjust them with a crop coefficient to 
evaluate actual evaporation (Allen et al., 1989; Rana and Katerji, 2000).  
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Penman-Monteith Equation 
 
A major and revolutionary breakthrough on quantifying evaporation was made by J.L. 
Monteith, a colleague of Penman at the Rothamsted Research station in England. 
Monteith modified the Penman equation by introducing a canopy resistance.  This is the 
basis of the now-famous Penman-Monteith equation (Monteith, 1981).  We will discuss 
this equation below. 
 
3. Physiological Approach 
 
Physiologists define evaporation using the network between the leaf stomatal cavity and 
the surface of a leaf: 
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2. Concepts/Theory Penman Monteith Equation 
 
From a leaf or physiological perspective, the flux density of water vapor is proportional 
to the total conductance exerted across the pathway and the chemical potential (as 
quantified by the concentration difference between the surface and atmosphere) 
 

w wE g c    

 
E: mmol m-2 s-1 
gw: mol m-2 s-1 
c: mmol mol-1 

 
Humidity is typically measured in terms of vapor pressure.  In this case 
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P: pressure (kPa) 
Mw: molecular weight of water vapor (18.0 g mole-1) 
Ma: molecular weight of dry air (28.97 g mole-1) 
e: (es(Ts) – ea) (kPa) 
 
Substituting Equation 2 into Equation 1 yields: 
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The clever attribute of the Penman Monteith equation revolves around how it eliminates a 
need to assess the surface temperature.  The humidity difference can be assessed through 
application of Taylor’s expansion series.   
 

( ) ( ( ) ) ( )s s a s a a s ae T e e T e s T T      

 
s is the slope of the saturation vapor pressure relation: 
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s equals 145 Pa oC-1 at 20 oC and ranges between 32 to 473 as air temperature increases 
from –5 to 44 oC. 
 
The energy balance of the land surface is different from that of a leaf. First there are new 
terms introduced due to storage of heat in the air, ground and plants.  Second the ground 
is only one sided: 
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Remember, the net longwave balance is computed as the difference between incoming 
and reflected incoming long wave. 
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Like our derivation of linearized forms of evaporation for leaves we can manipulate the 
energy balance, resistance equations for latent heat transfer and linearized forms of 
equations defining surface temperature to arrive at the Penman-Monteith Equation in 
terms of a canopy conductance for water, Gw, that includes a surface and boundary layer 
effect: 
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or a canopy conductance for the stomata, that is denoted separately from the boundary 
layer conductance: 
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In the terminology used here, capital letters assigned to conductances represent canopy 
scale. Lower case letters represent leaf scale. 
 
 
Turbulence and Diffusion.  
 
The canopy-scale aerodynamic conductance is much different than the leaf boundary layer 
conductance. Turbulent eddies are responsible for transporting material through the surface 
boundary layer.  The aerodynamic resistance determines the rate that momentum, and other 
scalars, are transported between a given level in the atmosphere and the vegetation's 
effective surface sink.  The aerodynamic resistance to momentum transfer is expressed as:  
 

2
*

ln ( / )a c
o

u 1 z - d
= - z LR

u ku* z
  

 
where k is von Karman's constant (0.4), u* is friction velocity, z is height, d is the zero-plane 
displacement, zo is the roughness parameter and c  is a diabatic correction function which 

is a function of z/L.   
 
Momentum transfer is associated with pressure forces, which have no analogue in 
association with heat and mass transfer (Garratt and Hicks, 1973; Massman, 1999; Stewart 
and Thom, 1973). Consequently, heat and mass transfer encounter an additional resistance 
as they are transferred through the well-mixed and turbulent surface layer and the laminar 
boundary layer of the amalgam of leaves, in the ‘big-leaf’ canopy.  In principles, 
 

, , ,a h a v a m bR R R R    

 
 
Rb is the quasi-laminar boundary layer resistance.  Fluid dynamicists evaluate this term as a 
function of the inverse Stanton number, B-1 (a dimensionless resistance, B-1=Rb u*), from a 
reference view-point).  This point, in my opinion obfuscates its meaning, as I have trouble 
with the concept of an inverse dimensionless number.  A better way to explain this 
resistance as there is an additional layer that must be crossed, from zo to zc, the scalar 
roughness length. 
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We also note it can be parameterized as a function of Sc is the Schmidt number and Pr is the 
Prandtl number, so Rb is a function of the mass or heat entity being transferred. 
 
Another approach to evaluating Rb comes from the atmospheric chemistry community.  
Kramm et al. present the total resistance as: 
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The first term on the RHS is the combined turbulent and molecular diffusion term across 
the viscous sublayer. The second term is the resistance to turbulent transfer across the 
boundary layer. 
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Stanton number equals B 
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The product kB-1 can be treated as a constant, but one that varies with canopy roughness and 
roughness Reynolds number (u* zo/). 
 
 
 

 
 
 The constant is often assumed to equal 2 over closed canopies, but can be much greater 
over rough incomplete canopies (Wesely and Hicks, 1977).   
 
In recent years the idea of Rb has been refined to account of canopies of different structure, 
as it can also vary with leaf area and the source sink distribution (Massman, 1999).  One 
model by Choudhury and Monteith (1988) yields: 
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Another by McNaughton and van den Hurk (McNaughton and van den Hurk, 1995) 
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Massman (1999) recently evaluated these algorithms, with his own new one, and shows 
how kB-1 can vary with canopy structure, yielding a more modern and sophisticated view 
of this otherwise ill-defined parameter. 
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Figure 3 After Massman 1999 

 
 
 
One point to be stressed with this portion of the discussion is that there is much value and 
potential to use detailed process level models, such as multi-layer Eulerian higher order 
closure and Lagrangian random walk models to develop big-leaf parameterization that 
incorporate aspects of varying canopy structure. These features have generally been 
ignored by many practitioners.  The next section provides another example of using 
detailed models to understand big-leaf parameterizations. 
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Figure 4 after Massman 1999 

 

 

L33.2 Aerodynamic Temperature and Infrared Temperature 
 
There have been many efforts to assess canopy sensible heat transfer with a measure of the 
canopy infrared temperature.  However, it is the aerodynamic temperature that is the 
temperature of the canopy that drives sensible heat transfer.  This problem is of concern 
because numerous studies show that the aerodynamic canopy temperature of agricultural 
crops and forests, determined with ground based radiometers (Huband and Monteith, 
1986)(Choudhury et al, 1986; Stewart et al., 1989; Dunin et al. 1989) and aircraft-mounted 
thermal scanners (Heilman et al., 1976), does not equal the canopy radiative temperature.  
 
The aerodynamic temperature is computed by manipulating the Resistance Equation for 
sensible heat transfer 
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From boundary layer theory we evaluate, Ra is the aerodynamic resistance as: 
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and Rb is the quasi laminar boundary layer resistance 
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An infrared thermometer measures the thermal radiance of a scene.  
 
Errors in evaluating the aerodynamic temperature with the infrared temperature will have 
many consequences with regards with using remote sensing to evaluate canopy latent and 
sensible heat exchange and canopy surface conductance.  The differences between the 
radiative and aerodynamic temperatures are typically on the order of 2 to 6 C.   
 
 

 
Figure 5 The relation between aerodynamic and radiative temperature at a corn site, Boardman, OR. 
(data of D. Baldocchi). 

 
 
Why does radiative temperature not equal aerodynamic temperature?   Let’s consider case 
where fraction of soil is 0.25 (fsoil) and that of vegetation is 0.75 (fveg), soil temperature is 
50C and vegetation temperature is 25C and the soil resistance is 500 s/m and the vegetation 
resistance is 50 s/m; we are considering a case where the soil gets very warm because the 
flow regime is decoupled and turbulent mixing is weak deep in the canopy.  We can 
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examine the difference between the radiative and aerodynamic temperatures using heat 
transfer and radiative transfer equations.  The aerodynamic temperature is computed from a 
‘big-leaf’ model that represents the combined fluxes from the soil and vegetation 
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For our case the mean temperature is 300 K, assuming air temperature is 293K. 
 
 
The other situation computes the radiative temperature based on the relative viewing of the 
soil and vegetation 
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This temperature is 304 K.  So even though the vegetation and soil components are the 
same temperature for both cases, the aerodynamic and radiative canopy temperatures 
differ by 4 K! 
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A demonstration is presented on the basis of measurements made over a corn site had 
partial cover. The soil was exposed to the sun and very warm, so the radiative temperature 
was quite high. In contrast, the heat exchange between the soil and air was decoupled, 
relative to the vegetation, so the aerodynamic temperature was much less than the infrared 
temperature. 
 
 
Atmospheric stability determines whether radiative canopy temperature measurements will 
over- or underestimate aerodynamic canopy temperature (Verma et al., 1976; Heilman et 
al., 1976; Choudhury et al., 1986).  Representative estimates of the canopy aerodynamic 
temperature measured with radiometers are difficult to attain because radiative temperature 
measurements depend on view and sun angles, degree of crop cover, soil-canopy 
temperature differences and──for airplane and satellite mounted sensors──atmospheric 
attenuation of radiation and the spatial variability in canopy emissivity (Heilman et al., 
1976; Kimes et al., 1980; Kimes, 1983; Huband and Monteith, 1986).  Nadir viewed 
radiometric measurements of canopy temperatures are the least representative of 
aerodynamic temperatures since radiative measurements are highly biased by the emission 
of thermal radiation from the soil (Kimes et al., 1980).  More representative estimates of 
radiative temperature of the foliage are possible by measuring canopy radiative temperature 
from multiple viewing angles or using the model inversion technique of Kimes (1983). 
 
 
The impact of errors in Tirt for computing sensible heat exchange can be examined with the 
aid of sensitivity tests.  For the surface energy balance a 1 C error in the surface to air 
temperature difference can yield a 40 W m-2 error in the estimate of H.   
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We assume a rough surface, Ra=20, Rb=10 s/m. 
 
The radiative temperature may also imply the wrong direction of H for there are instances 
where counter-gradient flux can occur.  One can have instances where the radiative 
temperature is warmer than the air temperature as a radiometer may be weighted by patches 
of hot soil.  But this portion of the canopy may be uncoupled from the atmosphere. In 
reality upper transpiring leaves can be cooler than the atmosphere and more closely 
coupled and may actually draw sensible heat from the atmosphere.  Here would be an 
instance of counter gradient transfer. 
 
 

Canopy Conductance vs Canopy Stomatal Conductance 
 

Though the Penman-Monteith equation attempts to incorporate physiology, its canopy 
conductance is ill-defined.  In the field of evaporation it is common practice to make a 
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first order estimate of Gc on the basis of a leaf area weighted integral of stomatal 
conductance. 

0

( )
L

sfc stom sG G g l dl    

Or in the field of hydrology, biogeochemistry the integrated canopy stomatal conductance 
is approximated by inverting the Penman-Monteith evaporation model. The relationship 
between these two metrics, however, has merit only when there is little or no exchange 
coming from the soil.    Because of the wide interest in determining bulk canopy 
conductances, several teams of scientists (Baldocchi et al., 1987; Baldocchi and Meyers, 
1998; Kelliher et al., 1995; Paw U and Meyers, 1989)(Finnigan and Raupach, 1985) have 
attempted to examine how the bulk canopy conductance responds to physiological and 
biophysical factors.  One can compute Gcanopy by inverting the total Penman-Monteith 
equation for whole canopy, yielding: 
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Now this relation does not yield any new information, because we need latent heat flux a 
priori to make this inversion.  On the other hand, it gives us a variable with which to 
work with and explore its dependency upon independent variables that can be measured.   
Furthermore, use of the inverted Penman Monteith conductance does not yield a 
satisfactory estimate of the leaf area weight stomatal conductance.   

Several empirical studies show how Gc and Gs relate to one another.  Theoretical studies 
(Raupach and Finnigan, 1986(Baldocchi and Meyers, 1998; Paw U and Meyers, 1989) 
report conditions where Gc > Gs and when Gs > Gc.  The relations are a factor of the ratio 
Gh/Gs, canopy leaf area, soil wetness. 
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Figure 6 Comparisons between canopy resistance and integrated stomatal resistance 

 

 
Using a biophysical model we can explore in more detail the interrelations between Gc 
and Gs. 
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Figure 7 Theoretical relation between the ratio of canopy and stomatal conductance as a function of 
the underlying soil resistance and photosynthetic capacity of the canopy 

 
 
 
 

 
Figure 8 After Kelliher et al. 1995 
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In a manner similar to our derivation of the energy balance of a leaf we can derive the 
isothermal net radiation balance to compute evaporation from a canopy, to remove the 
complication from not explicitly considering surface temperature when examining the 
sensitivity between latent heat exchange and incoming energy: 
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Details for this derivation are given in Appendix A33.2. 
 
 
Omega Theory 
 
Jarvis and McNaughton (Jarvis and McNaughton, 1986; McNaughton and Jarvis, 
1991)developed omega theory to examine the paradox of scales. Meteorologists 
contended that evaporation was driven by available energy and was independent of plant 
and surface control (e.g. Thornthwaite, 1944).  Physiologists contend that the opening 
and closing of stomata control plant water loss. 
 
They therefore address to what extent do stomata control evaporation.  At the canopy 
scale, they arrive at 
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The first case (1) is the limit when the vegetation is short and poorly efficient from an 
aereodynamic point of view. Evapotranspiration depend largely from the available 
energy, irrespectively from the stomatal control. In the second case (2) evapotranspiration 
is more directly controlled by VPD and the stomata.  
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 Broadly speaking short vegetation, like crops, is more dependent on the available energy 
(they are decoupled from the atmosphere, according to McNaughton and Jarvis 
terminology) while tall vegetation like forests is affected more by VPD and can control 
through stomata the water fluxes (they are coupled).  
 
Equilibrium Evaporation 
 
Equilibrium evaporation is one limit of Penman-Monteith evaporation theory: 
 

( )eq n

s
E R S

s



 


          

 
Equilibrium Equation can be derived via three routes of logic.  Mathematically, it 
describes the case when the aerodynamic conductance goes to zero, as when wind is 
calm.  
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Theoretically, one can arrive at the present definition of equilibrium evaporation by 
examining the time dependence of evaporation into a closed volume and its feedback 
with the humidity deficit of the volume (McNaughton and Spriggs, 1986).  
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From inspection of Equilibrium evaporation one can conclude that cooler zones in 
northern portion of the boreal climates have a lower potential to evaporate than locales in 
the southern zone (see Table 1; Nijssen et al. 1997).  One explanation for this 

observations stems from the fact that the factor, 
s

s 
, is a strong function of 

temperature.  For example, 
s

s 
is 0.32 at –5 oC and 0.47 at 5 oC, a 47% difference with 

a 5 oC increase in temperature. 
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s equals 145 Pa oC-1 at 20 oC and ranges between 32 to 473 as air temperature increases 
from –5 to 44 oC. 
 
 is the psychrometric constant.  Its value is 66.1 Pa K-1 at 20 oC and ranges between 64.6 
to 67.8 as air temperature varies between –5 and 45 oC. 
 
Priestly-Taylor Equation 
 
Simple models can be used for calculating evaporation flux densities under restricted 
conditions (see McNaughton and Jarvis, 1986; Jarvis and McNaughton, 1986).  Over 
well-watered and aerodynamically-smooth vegetation, evaporation flux densities are 
proportional to equilibrium evaporation flux densities (Eeq is a function of available 
energy and air temperature) and are relatively independent of surface control (Jarvis and 
McNaughton, 1986).  An assortment of studies report that the proportionality constant 
between actual and equilibrium evaporation flux densities ranges between 1.2 and 1.3 
(Debruin, 1983; Priestley and Taylor, 1972).  An appeal of using an equilibrium-based 
evaporation model is its dependence on variables that are readily computed by global and 
mesoscale meteorological models. 
 
The ratio, LE/LEeq, deviates from the cited narrow range under non-ideal conditions and 
over heterogeneous canopies.  Shuttleworth and Calder (1979) report that evaporation 
rates from wet forests exceed 1.3 times LEeq and evaporation rates from dry forests are 
much less than 1.2 times LEeq.  Other experimental and theoretical studies (over crops 
and forests) show that the ratio, LE/LEeq, decreases drastically from 1.2 as soil moisture 
deficits (Priestley and Taylor, 1972; Davies and Allen, 1973; Flint and Childs, 1991; 
Bailey and Davies, 1981; Spittlehouse, 1987) and surface conductance (de Bruin, 1983; 
McNaughton and Spriggs, 1986, 1989) cross some threshold.  Furthermore, an energy-
dependent evaporation model will break down at night if significant evaporation occurs 
when available energy is being lost to the environment.  
 
Evaporation over a hill 
 
As air passes over a hill numerous perturbations occur. The wind accelerates and 
decelerates, the radiation balance varies as a function of slope, azimuth and sun angle.  
Elevation changes affect temperature and can cause condensation and rain, with 
orographic lifting.  Different slopes have different amounts of available soil moisture, 
which together with environmental forcings affect leaf area index, stomatal conductance 
and evaporation rates.  Studies on evaporation from hills is rather rare, but it is an 
important topic when studying the biometeorology of California.  Blyth et al and 
Huntingford et al have developed simple algorithms for assessing evaporation on hills, by 
modifying the radiation geometery that affects the Penman-Monteith equation. 
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alpha is sun elevation angle, beta is hill angle, X is distance of the hill. 
 
They compute that potential evaporation can decrease by 20% over a 300 m hill.  It can 
increase by 10% over a hill with 30 degrees slope because of more surface area. 
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APPENDIX FOR GRADUATE STUDENTS 

 

Assessing Average Parameters for a Non-Linear Equation 

One issue relates to the fact that the Penman-Monteith equation can be envisioned as the 
average of latent heat fluxes.  On inspection we see that these components are a non-
linear function of the local surface conductance.  The important point to stress and 
conclude is that a simple average of multi-layer canopy conductances do not yield the 
appropriate metric (Baldocchi et al., 2005; McNaughton, 1994; Raupach, 1991). 

For example, let’s consider the Penman-Monteith equation as a function of its mean 
components: 
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Raupach (1991) and McNaughton (1994) show that the mean conductances that are 
needed to evaluate the proper evaporation rate are not the algebraic average of all the 
leaves in the canopy.  They must be weighted by the isothermal radiation balance, or in 
other words, by their potential contribution to canopy evaporation: 
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This may sound counter-intuitive, but the correct resistance to use is weighted by leaf 
area and net radiation!  We stress that not all leaves contribute equally or proportionally, 
as some deep in the canopy are decoupled from controlling evaporation, may have a huge 
resistance and bias the canopy average.  Consequently, the parameters should be flux-
weighted.  

We can draw upon a simple numerical experiment to understand the merits and demerits 
of using strict arithmetic and flux weighted resistances.  Lets examine the simple case of 
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a
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Leaf area density, a Resistance a/R 

2 25 0.08 

1 50 0.02 

1 100 0.01 

1 200 0.005 
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The Average resistance is 94 s/m, which produces a mean flux of A/R=5/94=0.0533.  The 
layer integrated flux is 0.115, a factor of two difference.  To produce a conserved flux, 
the flux-weighted resistance is 43 s/m. 

 

Appendix 
 
Penman Monteith Derivation 
 
For this analysis we start with the surface energy budget, which defines that the net radiative 
flux density is partitioned into sensible and heat heat flux density: 
 

nR H E G    

 
Solving for latent heat flux density yields: 
 

nE R H G     

 
Next we invoke the conductance/resistance relations for sensible and latent heat exchange.  
The conductance equation for sensible heat exchange is: 
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H is positive if heat enters the atmosphere, and negative if heat is lost from the atmosphere. 
 
The relation for latent heat exchange is: 
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We simplify the equation for E by applying the linearized form of the equation for es(Ts)-
ea: 
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As an aside, it should be noted that many derivations include the psychrometric constant, 
defined in terms of air pressure, the specific heat of dry air at constant pressure and the latent 
heat of evaporation. 
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The next key step is to eliminate the leaf-air temperature difference.  This is accomplished 
by solving for it in terms of latent heat exchange: 
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Next we re-arrange the equation so we can solve for E: 
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A final simplification is made by multiplying the equation by s to remove it from the 
denominator: 
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And Voila’, we now have an equation for the evaporation from the canopy, knowing its net 
radiation balance, without needing to know its surface temperature” 
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Breaking Gw into Gs and Gav, while retaining Rn yields: 
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We can also solve for surface temperature differences 
 
 
 
 
 
 
A33.2 Quadratic Solutions for canopy Temperature and canopy Latent Heat Exchange 
 
The leaf energy balance can also be used to derive a quadratic equation for latent heat 

exchange (E; W m-2): 
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We can solve directly for latent heat flux density 
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One derives a quadratic equation for E (aE2+bE+c=0). 
 
The coefficients for LE: 
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A quadratic equation, defining the difference between leaf and air temperature (T), 

was derived from the leaf energy balance relationship so an analytical solution could be used 

to compute leaf temperature (Paw U, 1987): 

a T2 + b T  + c =0         (A18) 

The coefficients are defined as: 
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where  is emissivity,  is the Stefan-Boltzman constant, a is air density,  is the latent 
heat of vaporization, Tk is absolute temperature (K), gs is the stomatal conductance (m s-

1), gh is the aerodynamic conductance for sensible heat transfer (m s-1), Cp is the specific 
heat of air, Q is absorbed energy (incoming short and long wave radiation, minus 
reflected shortwave radiation; W m-2), mv and ma are the molecular weights of vapor and 
dry air (g mol-1), P is pressure (kPa), es is saturated vapor pressure (kPa) and ea is the 
ambient vapor pressure (kPa).   
 
A33.3Evaporation and Isothermal net radiation. 
 
 
  It is the radiation flux density that occurs when the leaf and air temperature are equal. 
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Solving for latent heat flux density yields: 
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Substituting the isothermal radiation balance produces: 
 

34 ( )ni a l a soilE R T T T H G       

 
 



 33

Which allows us to produce an equation for latent heat exchange that is a function of the 
leaf-air temperature difference: 
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Substituting the leaf-air temperature difference equation into the relation for E produces: 
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An algebraic simplification can be made using the radiative conductance:   
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This term can be thought of as the resistance defining the conditions where sensible heat and 
emissive energy flux densities are in balance: 
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Next, we can refine the derivation by breaking the water vapor conductance into its 

components. 
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Assuming, that the conductances for heat and water vapor are identical, gh=gav, 

leads to: 
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