

Shaking Hands between Eddy Fluxes and Remote Sensing

Dennis Baldocchi University of California, Berkeley Eurospec Workshop, Trento, Italy, Nov 7, 2013

To Understand the Temporal and Spatial Dynamics of Carbon Fluxes We must have Appropriate Site Meta Data

Contrasting Ecosystems Experience Different Seasonality in C fluxes

Remote Sensing is an Important Partner to Quantify Canopy Structure, Function and Phenology of Ecosystem Metabolism

How we Interpret Reflected Light, from Space and Aircraft To infer Canopy Structure Depends upon How we Abstract that Canopy

Topics

- Evaluating Site Meta Data
 - LAI and Phenology with Gap Fraction and Spectral Reflectance
 - Canopy Height with LIDAR and Turbulence
- Temporal/Spatial Upscaling and Modeling
 - Flux Correlations with Normalized Difference
 Spectral Indices, broad-band and narrow-band

In Heterogeneous Forests it is Necessary to deploy Sensors On a Roving Tram to Study Light transmission and Canopy Structure

Bill Reifsynder (1924-2006), Yale

Renaissance in Instrumentation to Monitor Surface Phenology with a Suite of Optical Sensors

LED NDVI Sensor

Flux Tower with Digital Camera

Upward Looking Camera

Hyper-spectral spectrometer

What New Optical Sensors can Do?

- Digital Cameras: P₀, Normalized Difference
 Vegetation Indices, e.g. greenness, phenology
- Radiation Trams: P₀, APAR
- LEDs: NDVI, phenology
- HyperSpectral Spectrometers: NDVIs
- Airborne LIDAR: canopy height, tree size and spacing, digital elevation maps, flux footprint
- Terrestrial LIDAR: 3D voxel geometry of trees

Monitor Seasonality of Gap Fraction of Forests with Upward Looking Camera

Gap Fraction Phenology with Upward Looking Cameras under Oak Savanna

Can Detect Start and End of Growing Season with Precision

Upward Looking Cameras can Produce Accurate LAI estimates

Ryu et al 2012 Remote Sensing Environment

Many Native Vegetation Stands are Clumped At Crown and Landscape Scales

Canopy as a Turbid Medium With Random Leaves

Canopy with Clumps of Vegetation

Seasonality of clumping index = f(Crown Porosity, Gap Fraction)

Hemispherical Lens have Limitations in Open Savanna

Hemispherical Camera

Upward Looking Camera

Terrestrial LIDAR Maps Canopy in High Fidelity To Better Evaluate Clumping and Upscaling of Leaves to Canopies

Slide of M. Beland

Sensor head Rotary tabl Type of LIDAR Matters: **Comparison of Tree Characteristics** with Terrestrial and Airborne LIDAR 0.25terrestrial Lidar 0.2 airborne Lidar terrestrial Lida airborne Lidar 0.20 Relative frequency (fractions) Relative frequency (fractions) 0. -01 0.1 0.05-0.0 r 0 NA 5 9 ~ 2 3 10 ŝ ۵. 5 6 1 Ֆ 0.00 9 0 Crown diameter [m] 2 2 ზ 2 5 6 1 θ ~ 3 NA 5 2 10 Tree height [m] Beland, Natake, Baldocchi, unpublished

Measuring Light Transmission and Clumping

Volume: 30 cm * 30cm * 30cm

Grid: 14 *14 (2cm each)

Numbers: The number of contacts the needle made with leaves

 $\Omega = 2 / (\sigma^2 / Mx + 1)$ $\sigma^2 = variance$ Mx = mean of numbers

Beland, Nakate, Baldocchi, unpublished

Clumping within Foliage Voxels of Broadleaved Trees seems to be Nil, but Variable

preliminary results_july 29 2013, G function and effect of leaf size vs voxel size are not yet accounted for here

High variability of clumping within a species

Samples: 10 each = 40 total

New Opportunity to Deduce Canopy Height from Log Wind Law: Cheaper and Can Produce Time Series

Baldocchi, Sturtevant, Knox, Koteen, Pennypacker, Verfaillie, unpublished

LED NDVI over Annual Grassland

Ryu et al. 2010 AgForMet

Good Fit over Multiple Years, but Non-Linear and May be Site Specific

Phenology of Flowering and Seeding Plants Complicates interpretation of Greenness Indices

Purple Flowering Alfalfa

White and Yellow flowers on Pepperweed

Rice in Seed Stage

Greenness Index over Crop, Wetland and Pasture

Digital Camera

Saenz, Knox, Sturtevant, Koteen, Verfaillie, Baldocchi, unpublished

Cameras Monitor Management and Phenology of Crops, Rice 2013

Disced, pre-planting

Flooding, seedlings

Full canopy, vegetated

Seed Filling

Harvesting

Chopped Straw

Canopy Photosynthesis vs Vegetation Index, Rice

Restored Wetland

Fall 2010

Summer, 2012

Summer, 2013

Winter, 2013

Digital Cameras Produce Cheap Long Term Records of Phenology

Mayberry Restored Tule Wetland

Day

Time Series of Hyperspectral Reflectance

3D time Series of Hyperspectral Reflectance, Rice

Jaclyn Hatala, PhD dissertation

Big Picture Goal :

• How can We Evaluate Carbon Fluxes 'Everywhere, All the Time?'

Scale Satellite Snap-Shot with Daily Integral of Energy Fluxes

ESPM 2 The Biosphere

Validate Model Across FLUXNET

Ryu et al. 2012 Global Biogeochemical Cycles

GPP (gC m-2 yr-1) Year: 2003

Concluding Remarks

- Links between Eddy Flux Measurements and Digital Information from Cameras, LED sensors and Hyperspectral Spectrometers has potential for Inexpensive landscape upscaling of carbon fluxes
 - May have potential for assessing Carbon Exchange for Carbon markets and other Applications

Acknowledgments: The Biomet Lab

Acknowledgment to Biomet Lab

Joe Verfaillie

Martin Beland

Jaclyn Hatala

Youngryel Ryu

Taichi Natake

Interannual Variability

Year

Ryu et al.

Jaclyn Hatala, PhD dissertation

Simulated understory (1m above the ground) radiations near the tram site

ESPM 111 Ecosystem Ecology

Interannual Variability

Year

Ryu et al.

Jaclyn Hatala, PhD dissertation

Jaclyn Hatala, PhD dissertation

Method: Comparing Tree Location, Height and Crown Size

V.S.

Map 4: Tree Distribution at Tonzi Ranch shown by Processed Airborne Lidar Data

 Trees based on Processed Airbone Lidar Data
The tree positions were produced by Airborne Lidar data, processed through a certain algorithm.
The zoomed area shows strong agreement of tree locations betweem IKONOS image and processed Airborne Lidar data.
Map Created by Taichi Natake 6/25/13 *The area of interest (shown by white rectangular box) has area of 2.52 ha (140m * 180m). **Flux Tower and road were shown in yellow as spatial references.

Coordinate System: NAD 1983 UTM Zone 10N

Airborne data was processed by Chen et al. 2006

Processing Demo: <u>Demo Files\Terrest Tree Demo.mp4</u>

Result2: Comparison of Tree Characteristics

Differences between Airborne and Terrestrial LIDAR data might be significant to Radiative Transfer Model

LIDAR derived map of Tree location and Height

LIDAR Measurements of Tree Height Oak Savanna, Ione, CA

Ryu et al 2010 AgForMet

Model assumption of canopy shape

Simulated images (RGB composite)

Comparisons of landscape average simulated and AVIRS reflectance

Comparisons of simulated and measured spectral transmittance

Simulated and measured understory radiations along the 20m transect

Comparison of simulated and tram-measured PAR and net radiation Each point is an average of 20m tram transect

Comparison of simulated and tram based radiation measurements

Comparison of top of the tower net radiation, sensible heat and latent heat

Validate Model Across FLUXNET

Ryu et al. 2012 Global Biogeochemical Cycles

