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What Is Biometeorology?

e |tis a science that
deals with the
relationship between
living things and
atmospheric
phenomena.

Has Applications to Biogeochemistry, Ecosystem Ecology, Agriculture,
Weather and Climate Prediction, etc



Biometeorology in a Bottle

Wine, the Perfect Integrator of Climate, Terroir and Biology



Goals of Biomet Research @ UCB

‘Breathing of the Biosphere’
Study the physical, biological, and chemical process that control
trace gas fluxes between the biosphere and atmosphere




Physics Wins—Biology is How it’s Done

e Physics wins

Ecosystems function by capturing solar energy
* Only so much Solar Energy can be captured per unit are of ground

Plants convert solar energy into high energy carbon compounds for work
e growth and maintenance respiration

Ecosystems must maintain a Mass Balance
* Plants can’t Use More Water or Carbon than has been acquired

Plants transfer nutrients and water between air, soil and plant pools to sustain
their structure and function.

 Biology is how it’s done

Species differentiation (via evolution and competition) produces the structure and
function of plants, invertebrates and vertebrates

In turn, structure and function provides the mechanisms for competing for and
capturing light energy and transferring matter
e Stomata open and close to regulate gas exchange through leaves

Bacteria, fungi and other micro-organisms re-cycle material by exploiting
differences in redox, passing electrons and extracting energy

Reproductive success passes genes through the gene pool.



Size vs Density transcends 9-12 orders of magnitude
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Metabolic Scaling of Populations of Organisms

Energy flux of a population per unit area (B,) is
invariant with mass of the system (M):
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Biometeorology: Represents Multidisciplinary Integration of
Atmospheric Science, Plant Physiology and Ecosystems

Ted Hsiao:
Plant Water Relations

\n X
John Carroll:
Atmospheric Science

Intellectual Influences
Davis, 1973-1977

Bill Pruitt:
Evapotranspiration

Jerry Hatfield:
Biometeorology
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Bob Loomis:
Crop Ecology

Leonard Myrup:
Micrometeorology



Outline

 Water and Energy
e Carbon Dioxide
e Policy Implications:

— Pros/Cons of Afforestation to
Remedy Global Warming



Energy Exchange: Classical View

Net Radiation Energy Partitioning
Budget
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Biogeophysical-Ecohydrological View
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Controlling Processes and Linkages:
Roles of Time and Space Scales
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Energy Exchange

*How does Evaporation vary with Climate and Ecosystem?

How much Solar Energy is Available?
*Pros/Cons of biofuels vs solar cells

How does Land Use Change affect Climate, Weather and Water Availability?
*Tropical Deforestation
sLarge-scale Biofuels Plantations
*Re-Forestation



Crop Evaporation is Strongly Coupled to Solar Radiation
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But Corn (C,) Doesn’t Evaporate like Wheat (C;)!
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Plus Forests Do not Evaporate Like Crops
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And Evaporation of a California Oak Savanna is weakly related to Available Energy

oak savanna 2006

Coefficients:
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Classic View Meteorological View to Evaporation: -
Budyko Evaporation Index
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Biometeorological View to Evaporation
Penman Monteith Equation

5(R,=S)+p-C,-G,-D

s+7+y9i
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Function of:

eAvailable Energy (Rn-S)

eVapor Pressure Deficit (D)

e Aerodynamic Conductance (Gh)
eSurface Conductance (Gs)



Effects of Functional Types and R, on Normalized Evaporation
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You Need Water to Grow Trees, Maintain high LAl and

LAI

Achieve a Low Surface Resistance!
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Stomatal Conductance Scales with N, via Photosynthesis
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Eco-hydrology:
ET, Functional Type, Physiological Capacity and Drought
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ET and Soil Water Deficits:
Root-Weighted Soil Moisture
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Use Appropriate and Root-Weighted Soil Moisture
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Stand Age also affects differences between ET of forest vs grassland

Plynlimon, Wales
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Forest Biodiversity is Negatively Correlated with Normalized Evaporation

Temperate/Boreal Broadleaved Forests
Summer Growing Season
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Photosynthesis >
Respiration
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Canopy Carbon Balance

Net Ecosystem
Carbon Exchange

Ll .

Gross Photosynthesis

Dark and
Photo Respiration g

*What types of landscapes are better or worse sinks for
Carbon?

*How does Carbon Assimilation and Respiration respond
to Environmental stresses, like drought, heatspells,
pollution?

*Are Forests Effective Mitigators for stalling Global
Warming?



Carbon Uptake of Crops is a Linear Function of Sunlight:
An Emergent Property of the EcoSystem
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What is the Upper Bound of GPP?

Bottom-Up:
Counting Productivity on leaves,
plant by plant, species by species

Global GPP is~ 120 * 10> gC y!

Top-Down:
Energy Transfer

Bounding Global Primary Productivity

S*=1365 W m?

o _
7 RN o
. = -2 L
S* e = 1365/m W m 0N, transmission ~ 1-0.17=0.83

G : growing season (180days)
a: light use efficiency
L:Land area (100-10" m?)
m:12gC mole
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Upper-Bound on Global Gross Primary Productivity

e Global GPPis~ 120 * 10 gCy!

e Solar Constant, S* (1366 W m2)
— Ave across disk of Earth S*/4

*  Transmission of sunlight through the atmosphere (1-0.17=0.83)
e Conversion of shortwave to visible sunlight (0.5)
e Conversion of visible light from energy to photon flux density in moles of quanta
(4.6/10°)
— Mean photosynthetic photon flux density, Q,
* Fraction of absorbed Q, (1-0.1=0.9)
* Photosynthetic efficiency, a (0.015)
* Arable Land area (~ 133 * 1012 m?)
e Length of daylight (12 hours * 60 minutes * 60 seconds = 43200 s/day)
e Length of growing season (188 days)
e Gram of carbon per mole (12)

GPP = 1366*0.83*0.5*4.6*0.9*0.015*133 10%2*43200*188*12/(4* 10°)=114* 10%*° gCy'!



Canopy Light Response Curves: Effect of Diffuse Light

Temperate Broad-leaved Forest
Spring 1995 (days 130to 170)
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More Diffuse Light is Intercepted that Direct Radiation, at High Solar Elevation Angles
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Net Ecosystem Carbon Exchange Scales with Length of Growing Season

® Temperate and Boreal Deciduous Forests
v Deciduous and Evergreen Savanna
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Length of Growing Season, in Temperate Ecosystems, is
associated with the timing between soil temperature and mean
annual air temperature

Oak Ridge, TN
Mixed Oak/Maple Forest
1996
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Soil Temperature:
An Objective Measure of Phenology, part 2

Temperate Deciduous Forests
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If Papal Indulgences Saved Them from burning in Hell:
Can Carbon Indulgences save us from Global Warming?

Alexander VI

Sixtus IV

Innocent VIII

Julius I

Leo X



Working Hypotheses

e H1: Forests have a negative feedback on Global Warming
— Forests are effective and long-term Carbon Sinks
— Landuse change (more forests) can help offset greenhouse gas
emissions and mitigate global warming
e H2: Forests have a positive feedback on Global Warming
— Forests are optically dark and Absorb more Energy

— Forests have a relatively large Bowen ratio (H/LE) and convect more
sensible heat into the atmosphere

— Landuse change (more forests) can help promote global warming



Ecosystem Respiration Scales Tightly with Ecosystem Photosynthesis,
And Is with Offset Positively by Disturbance
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Case Study:

Energetics of a Grassland and Oak
Savanna

Measurements and Model




Case Study:
Savanna Woodland adjacent to Grassland
@ Solar Radiation

© Net Radiation, Grassland
v Net Radiation, Savanna

35

Energy Flux Density (MJ m™? d™)

1. Savanna absorbs much more Radiation (3.18 GJ m=2 y1) than
the Grassland (2.28 G) m2y1); ARn: 28.4 W m*?



Landscape Differences
On Short Time Scales, Grass ET > Forest ET

Monthly Averages

LE/LE,,

@® Savanna Woodland
© Annual Grassland
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Role of Land Use on ET:
On Annual Time Scale, Forest ET > Grass ET

California Savanna
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u*, grassland, daily average

4a. U* of tall, rough Savanna > short,

S
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4b. Savanna injects more Sensible

Heat into the atmosphere because
it has more Available Energy and it
is Aerodynamically Rougher
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Air Temperature (C)

2006, lone, CA
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5. Mean Potential Temperature differences are relatively small (0.84 C;
grass: 290.72 vs savanna: 291.56 K); despite large differences in Energy
Fluxes--albeit the Darker vegetation is Warmer

Compare to Greenhouse Sensitivity ~2-4 K/(4 W m2)



Conceptual Diagram of PBL Interactions
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*The Energetics of
afforestation/deforestation is
complicated

eForests have a low albedo,
are darker and absorb more
energy

eBut, Ironically the darker
forest maybe cooler (T
than a bright grassland due to
evaporative cooling

T surface

Rnet (W m‘z)
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eForests Transpire effectively,
causing evaporative cooling,
which in humid regions may
form clouds and reduce
planetary albedo
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Small, but Positive, Temperature Differences Stem from interactions among PBL, R, and albedo....!!

u* savanna = 2 u* grassland
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What about Forests and other Vegetation as a source Biofuels?




Energy Drives Metabolism: Only a small fraction of Solar
How Much Energy is Available and Where Energy is converted to Biofuels

FLUXNET database
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Plant systems are Low Efficiency Solar Cells that Operate only Part of the Year!



Potential and Real Rates of Gross Carbon Uptake by Vegetation:
Most Locations Never Reach Upper Potential

FLUXNET 2007 Database
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How Does Energy Availability Compare with Energy Use?

US Energy Use: 105 EJ/year
— 1018) per EJ
— US Population: 300 10°
— 3.510' J/capita/year
US Land Area: 9.8 10° km?=9.8 10> m? = 9.8 108 ha
Energy Use per unit area: 1.07 107 J m2
Potential, Incident Solar Energy: 6.47 10° ) m™
— lone, CA
Assuming 20% efficient solar system
— 8.11 10'° m? of Land Area Needed (8.11 10° km?, the size of South Carolina)




Concluding Issues to Consider

Vegetation operates less than % of the year and is a solar collector with less than
2% efficiency

— Solar panels work 365 days per year and have an efficiency of 20%+
Ecological Scaling Laws are associated with Planting Trees
— Mass scales with the -4/3 power of tree density
Available Land and Water
— Best Land is Vegetated and New Land needs to take up More Carbon than current land
— You need more than 500 mm of rain per year to grow Trees
The ability of Forests to sequester Carbon declines with stand age
There are Energetics and Environmental Costs to soil, water, air and land use
change
— Changes in Albedo and surface energy fluxes
— Emission of volatile organic carbon compounds, ozone precursors
— Changes in Watershed Runoff and Soil Erosion
Societal/Ethical Costs and Issues
— Food for Carbon and Energy
— Energy is needed to produce, transport and transform biomass into energy
— Role of forests for habitat and resources

— Fostering natural Carbon Sinks may be a Band-Aid compared to ‘natural’ growth
attributed to population and economy






How much is Cin the Air?

e Mass of Atmosphere

— F=Pressure x Area=g x Mass P'47ZR2
— Surface Area of the Globe = 471 R? Matmos =

— M, os = 101325 Pa 47 (6378 103 m)2/9.8 m? s'1= g

— b5.310%' gair

e Compute Cin Atmosphere @ 380 ppm

pc mCOZ mc :83310159C
P ma mcoZ

M.=M

C atmos

p
M, /(-%)=2.19
)



CO, in 50/100 years Business as Usual?

Current Anthropogenic C Emissions
— 7 GtC/yr, (1 GtC = 10* g=1Pg)
— 45% retention in Atmosphere
Net Atmospheric Efflux over 50 years
— 7 *50*0.45 =157 GtC
Atmospheric Burden over 50 years
— 833 (@380 ppm) + 157 = 990 GtC,
Conversion back to mixing ratio
— 451 ppm ( 2.19 Pg/ppm) or 1.6 x pre-industrial level of 280 ppm
To keep atmospheric CO2 below 450 ppm the world must

add less than157 GtC into the atmosphere over the next
100 to 200 years.



Atmospheric Chemistry

. 5E

. N

C.H No, — O;

(& /)]

NO + O, = NO, NO, +hv—
T 1 l NO+O

*How effective is Vegetation as a sink for Pollution?
*To what extent are forests sources of precursors for
pollution?

*What is the Feedback between aerosols and LUE?
*How do the sources and sinks vary with weather
and climate?




CANVEG Schematic
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Aspen: Boreas
D207, 215,216,219,243, 1994
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Mixed Forests Contain Isoprene Emitters

Walker Branch 1999 .
and non Emitters

Species Composition

(each plot has a radius of 10m,
distance between plot centers on one
transect is 100m)

500m

H Maple
W Hickory
O Tulip Poplar
0O Qak

O other decid.

Data of Eva Falge ESPM 228 Adv Biomet & Micromet



b

b, (x)p(x)d

isoprene emitting biomass (b)),
sensed by a micrometeorological
flux measurement system, along
the wind-blown axis (x) is a
function of the flux footprint,
defined by the probability
distribution p(x)

Isoprene Emitting Biomass (g m™)

Flux Footprint probability

Mixed Oak-Maple Forest
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Model in Mixed Forest with and without Flux Footprint:
For Atmospheric Chemistry Species Composition MATTERS as well as the biophysics

—#— CANVEG model: 145 g m™ biomass factor

—8— measured —é&— CANVEG model: 220 g m™ biomass factor

B0 9  Mixed Oak-Maple forest n
Oak Ridge, TN

-2 o
Fscores (MOl M 57}

Time (hours)

Baldocchi et al 1999 JAM ESPM 228 Adv Biomet & Micromet



