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Methods To Assess Terrestrial Carbon Budgets g
at Landscape to Continental Scales, and Across 

Multiple Time Scales

GCM Inversion Eddy Flux 
Modeling

y
Measurements/
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InventoriesInventories

Biogeochemical/Physiological Measurements/
Manipulation Expts Ecosystem Dynamics
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Manipulation Expts.



Flask Network and Inversion modelsFlask Network and Inversion models

• Pros
• Cons
• Sparse flask network
• Biased to marine boundary• Produces Global and 

Zonal C fluxes

• Biased to marine boundary 
layer

• Ill-posed problem
• Crude spatial resolution• Crude spatial resolution

Remedyy
Use isotopes (13C) and surface 

flux measurements to 
constrain source/sink 
calculationscalculations

More sites measuring C in x,y and 
z

Better Transport Model
Carbon Satellite, OCO



SatellitesSatellites • ProsSatellitesSatellites • Global, Regional and 
Local Coverage

• Can detect Seasonal• Can detect Seasonal 
trends

• Cons
• Inferred estimates of 

NPP and LAI
• Relies on Unvalidated  

Algorithms

Remedy
New Satellite platforms 

(EOS) Algorithms
• Intermittent Coverage
• Can’t Assess NEP

( )
Validate Algorithms with 

Direct Eddy Flux 
Measurements



CBL CBL • Pro
BudgetsBudgets

• Pro
• Provides mixed layer estimate of 

CO2 for inversion models
• Provides landscape scale fluxes

• Con
• Valid only under ideal 

conditionsconditions
• Affected by Advection
• Needs information on 

CO2 above PBLRemedy
Improve estimates of 

entrainment fluxesentrainment fluxes



MicrometeorologicalMicrometeorological
Eddy FluxesEddy Fluxes • Pros

• Direct measurement
• Evaluates Fluxes onEvaluates Fluxes on 

diurnal, seasonal and 
interannual time scales

• Provides ProcessProvides Process 
information

• Cons
• Nighttime biases

S ll f t i t ( 1 k )Remedy • Small footprint (< 1 km)
• Not applicable in Complex 

Terrain

Remedy
Validate with Leaf physiology 

and plant/soil samples, 
sapflow, biometry and 

• Network of Towers is 
Discrete in Space

p , y
watershed measurements



Biomass and Soil SurveysBiomass and Soil Surveys

• Pros
A direct meas re of plant• A direct measure of plant 
growth and soil C 
sequestration

• Cons
• High spatial variability
• Below-ground NPP is rarely 

measured
• No mechanistic information 

C fl

Remedy
C isotope studies
More root and below on C fluxes

• Takes several years to 
resolve significant 
differences

More root and below 
ground measurements

differences



Eddy Covariance TechniqueEddy Covariance Technique
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Objectives

• Network Background
• Time

– Daily and Annual Integration
– Seasonal DynamicsSeasonal Dynamics
– Inter-Annual Variability
– Disturbance/Chronosequence

P• Processes
– Photosynthesis = f(Q,T,functional type)
– Respiration = f(T, growth, ppt, θ)p ( , g , pp , )

• Space
• Other Uses and Application

– Ecosystem Modeling



FLUXNET: From Sea to Shining Sea
400 Sit i 2007400+ Sites, circa 2007

FLUXNET 2007
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Flux Networks





Network Representativeness

Sundareshwar et al, 2007 Science





Global distribution of Flux Towers with Respect to Climate



Institutional Memory:
Evolution of FLUXNET

• Measure Annual Cycle of NEE
– Micromet issues of Detrending, Transfer Functions, Flux 

Sampling and Measurements, Gap-filling, Error 
Assessment

• Workshops
– LaThuile 

Italy, 
1995

• Measure and Interpret Intra-annual Variation of NEE
– Flux partitioning (GPP & Reco); assessment of 

metadata,e.g. Vcmax, soil respiration, LAI, biomass 
inventories. 
Quantifying Biophysical Controls on Fluxes

1995
– Flathead 

Lake MT, 
1997

– Marconi 
CA 2000– Quantifying Biophysical Controls on Fluxes

• Measure and Interpret Inter-annual variations of NEE
• Measure NEE over multiple Land-Use Classes

– crops, grasslands, deciduous and evergreen broadleaf 
and conifer forests

CA, 2000
– Orvieto 

Italy, 
2002

– Lakeand conifer forests
– Disturbance, logging, biodiversity and fire

• Manipulative Studies
– Nitrogen and H2O additions

• Measure NEE over Representative Areas

Lake 
Tahoe 
CA, 2003

– Firenze 
Italy, 
2004Measure NEE over Representative Areas

– Scaling Flux Information of Footprint to MODIS pixel
2004

– LaThuile, 
2007



FLUXNET SuccessesFLUXNET Successes

• ‘Mountains’ of data from a spectrum of canopy roughness and stability 
conditions, functional types and climate spaces have been collected

• A Model for Data Sharing
– FLUXNET Web Site a venue for distributing Primary Value-added and Meta-Data– FLUXNET Web Site, a venue for distributing Primary, Value-added and Meta-Data 

products
• Value-Added Products have been produced

– Development of Gap-Filling Techniques
– Production of Gap-Filled Daily and Annual Sums

M N Fi di E P E i l C l d• Many New Findings on Emergent Processes, Environmental Controls and 
Seasonality and Annual  C fluxes

• Data for Validating and Improving SVAT models used for weather, climate, 
biogeochemistry and ecosystem dynamics

• Collaboration & Synthesis through Workshops and Hosting VisitorsCollaboration & Synthesis through Workshops and Hosting Visitors
– Building a Collaborative, Cooperative, Multi-Disciplinary & International 

Community of Researchers
• Training New and Next Generation of Scientists, Postdocs, Students



LaThuile Fluxnet Workshop, Feb. 2007
• New Gap-Filled, Qa/Qc DatasetNew Gap Filled, Qa/Qc Dataset
• 250 Sites; 930 Site-years of Data
• www.fluxdata.org



‘Failures’/’Un-resolved’ Issues

• Not Measuring Night time Fluxes Well• Not Measuring Night-time Fluxes Well
– ImPerfect U* correction 

• Not Measuring Fluxes over Complex 
terrain and during Advection Wellterrain and during Advection Well

• ImPerfect Flux Partitioning
– Works Better on Longer Time Scales

I P f t E B l Cl• ImPerfect Energy Balance Closure
– Could be ‘red-herring’ based limited Rn and G 

fetch
• Need Better Outreach and Training• Need Better Outreach and Training

– Being Rectified at LaThuile with Participation 
of New Generation of Fluxnet Scientists



Temporal Dynamics of C FluxesTemporal Dynamics of C Fluxes

• Hour
• Day
• Month
• Season
• Year
• Multiple Years • Pulsesp • Pulses

• Lags
S it h• Switches



Annual Time Series of Trace Gas Exchange

Vaira Grassland 2001
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Complicating Dynamical FactorsComplicating Dynamical Factors

• Switches
– Phenology
– Drought

Temperate Broadleaved 
Deciduous Forest

3

4

5
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Probability Distribution of Published NEE Measurements, Integrated Annually
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Does pdf change with Time and/or as the Network Grows?

FLUXNET Database: n ~ 300 in 2003; n ~ 430 in 2005



Does Net Ecosystem Carbon Exchange Scale with Photosynthesis?
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Ecosystem Respiration Scales Tightly with Ecosystem Photosynthesis,
But Is with Offset by Disturbance
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Net Ecosystem Carbon Exchange Scales with Length of Growing Season
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Decadal Plus Time Series of NEE:
Flux version of the Keeling’s Mauna Loa Graph

Harvard Forest, 1991-20048
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Interannual Variation and Long Term Trends 
in Net Ecosystem Carbon Exchange (FN), Photosynthesis (FA) and Respiration (FR)
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Power Spectrum of CO2 Fluxes
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Singular System Analysis: example application

Original time series:

Decomposed time series:

- Nonlinear trend

Annual cycle- Annual cycle

- Intra-annual cycle

- High frequency modes

New developments allow application of SSA to fragmented time series

Mahecha et al. (2007) Biogeosciences, 4, 743-758



Interannual Variations in Photosynthesis and Respiration are Coupled

Interannual Variability in FN
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Lag Effects Due to 2003 European 
D ht/H t StDrought/Heat Stress
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Emerging Processes
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Emergent Scale Process:
CO2 Flux and Diffuse Radiation

•We are poised to see effects of Cleaner/Dirtier Skies and Next Volcano

Niyogi et al., GRL 2004



Potential and Real Rates of Gross Carbon Uptake by Vegetation:
Most Locations Never Reach Upper Potential

GPP at 2% efficiency and 365 
day Growing Season

tropics

GPP at 2% efficiency and 
182.5 day Growing Season

FLUXNET 2007 Database



Optimal NEE: Optimal NEE: pp
Acclimation with TemperatureAcclimation with Temperature
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Linking Water and Carbon:
Potential to assess Gc with Remote Sensing
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Gc Scale Invariance?
Task to Expand with New Database
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Environmental Controls on Respiration
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Quantifying the impact of rain pulses on respirationy g p p p
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Soil Respiration Lags Photosynthesis onSoil Respiration Lags Photosynthesis on
Hourly Scale

June, 2003
7
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Soil Temperature:
An Objective Indicator of Phenology??

Soroe, Denmark
Beech Forest
1997
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Soil Temperature:
An Objective Measure of Phenology part 2An Objective Measure of Phenology, part 2

Temperate Deciduous ForestsTemperate Deciduous Forests
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Spatial Variations in C Fluxesp



Spatialize Phenology with Transformation Using Climate Map
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Fl B dFlux Based 
Phenology 
Patterns with 
Match well with 
data from 
PhenologyPhenology 
Network

White, Baldocchi and Schwartz, unpublished



Do Snap-Shot C Fluxes, inferred from Remote 
Sensing Relate to Daily C Flux Integrals?

8 day means
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1600 8 day means
0.03
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MODIS GPP Algorithm Test

Heinsch et al. 2006 RSE



Upscaling Tower Measurements with 
Neural Network Model and RemoteNeural Network Model and Remote 

Sensing

Papale and Valentini, 2003 GCB

What are Pros and Cons?



Limits to Landscape Classification by Functional Type

• Stand Age/Disturbance
• Biodiversity• Biodiversity
• Fire
• Logginggg g
• Insects/Pathogens
• Management/Plantations

K t F t• Kyoto Forests



Time Since Disturbance Affects Net Ecosystem Carbon Exchange

Conifer Forests, Canada and Pacific Northwest
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Effects of Stand Age:
After LoggingAfter Logging

Law et al. 2003 Global Change Biology



Northern Manitoba: Black Spruce chronosequence (Goulden et al.)
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SOURCE



Other Activities and Uses of Fluxnet Data

• Ecosystem Modeling
• EcoHydrologyEcoHydrology
• Biodiversity

Cli t• Climate



Ecosystem Model Testing and Development

Kucharik et al., 2006 Ecol Modeling



Net ecosystem exchange of CO2 (NEE) predicted by different terrestrial biosphere 
models compares favourably with FLUXNET observations at diurnal and seasonal 

timescales. 

Friend et al 2007, GCB



Seasonality of Photosynthetic CapacitySeasonality of Photosynthetic Capacity

Wang et al, 2007 GCB



Optimizing Seasonality of Vcmax improves Prediction of Fluxes

Wang et al, 2007 GCB



Bi di it d E tiBiodiversity and Evaporation

Temperate/Boreal Broadleaved Forests
Summer Growing Season
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Testbed for Ecohydrological Theory

Miller et al, Adv. Water Research, 2007



Energy Flux Biogeography

FLUXNET database
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Mean Soil Temperature Scales with Mean Air Temperature

FLUXNET Database
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Current and Future Scientific Directions
NEE i U b d S b b Af i I di L ti A i d Hi h A ti– NEE in Urban and Suburban, Africa, India, Latin America and High Arctic 
Environments

– Quantifying and Understanding the controls on Interannual Variability of C 
and energy Fluxes

– Monitoring the Metabolism of Ecosystems as we undergo Global ChangeMonitoring the Metabolism of Ecosystems as we undergo Global Change
– Coupling CO2, Trace Gas Deposition/Emission (O3, voc) and Methane 

Fluxes
– Adopting New Technology (TDL, wireless networks) to embellish flux 

measurements
– Couple tower data with Real-time Data Assimilation Models.
– Boundary Layer Budgets using Fluxes and High Precision CO2

measurements
– Spectral reflectance measurements and Digital Photos across the network 

for phenology and dynamics of structure and functionfor phenology and dynamics of structure and function
– Spatial-Temporal Network-Scale Analysis
– Real-time Data Assimilation
– Matching Footprints of Tower and Pixels

Model Lags Switches and Pulses– Model Lags, Switches and Pulses
– Using Fluxnet data to assess problems in

• Ecology, Ecohydrology, Biogeochemistry, Biogeography, Remote 
Sensing, Global Modeling, Biodiversity

• Testing Maximum Entropy, Ecosystem Ecology, Biogeography andTesting Maximum Entropy, Ecosystem Ecology, Biogeography and 
EcoHydrology Theories



FLUXNET 2007++
New Issues/Questions RaisedNew Issues/Questions Raised

• Production of New, Expanded DataBase
• Use of New Software Tools to Facilitate DataBase Navigation & g

Exploration
• Broader representation of vegetation types and climates on NEE, GPP 

and Reco. 
• Roles of natural and human induced disturbance on C Fluxes
• Impacts of climate and ecosystem factors on inter-annual variations of 

carbon, water and energy fluxes. 
• Use FLUXNET data to provide ground-truth information to validate and 

‘anchor’ NPP and fpar products being produced by MODIS LAND p p g p y
• Perform geostatistical analyses with the FLUXNET database to 

examine the scales of spatial coherence of net carbon, water and 
energy fluxes across landscapes, regions and continents and to 
quantify the ‘network connectivity’ among groups of sites. 

• Revisit many basic tenets of bio- & micrometeorology
– Data are being collected from a spectrum of land surface types (short 

grasses and crops, through open heterogeneous canopies to tall, closed 
forests) on flat to moderately undulating terrain over a wide range of 
atmospheric stability conditionsatmospheric stability conditions 

– Intermittent Turbulence
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