Using a Global Flux Network—FLUXNET— to Study the Breathing of the Terrestrial Biosphere

> Dennis Baldocchi ESPM/Ecosystem Science Div. University of California, Berkeley

Contemporary CO₂ Record

Mauna Loa Keeling data

Methods To Assess Terrestrial Carbon Budgets at Landscape to Continental Scales, and Across Multiple Time Scales

Remote Sensing/ MODIS

Eddy Flux Measurements/ FLUXNET

Forest/Biomass Inventories

Physiological Measurements/ Manipulation Expts.

Biogeochemical/ Ecosystem Dynamics Modeling

Flask Network and Inversion models

• Pros

 Produces Global and Zonal C fluxes

Cons

- Sparse flask network
- Biased to marine boundary layer
- Ill-posed problem
- Crude spatial resolution

Remedy

Use isotopes (¹³C) and surface flux measurements to constrain source/sink calculations More sites measuring C in x,y and z Better Transport Model Carbon Satellite, OCO

Satellites

Remedy New Satellite platforms (EOS) Validate Algorithms with Direct Eddy Flux Measurements

• Pros

- Global, Regional and Local Coverage
- Can detect Seasonal trends
- Cons
- Inferred estimates of NPP and LAI
- Relies on Unvalidated
 Algorithms
- Intermittent Coverage
- Can't Assess NEP

CBL Budgets

Remedy Improve estimates of entrainment fluxes

• Pro

- Provides mixed layer estimate of CO₂ for inversion models
- Provides landscape scale fluxes
 - Con
 - Valid only under ideal conditions
 - Affected by Advection
 - Needs information on CO₂ above PBL

Micrometeorological Eddy Fluxes

Remedy

Validate with Leaf physiology and plant/soil samples, sapflow, biometry and watershed measurements

- Pros
- Direct measurement
- Evaluates Fluxes on diurnal, seasonal and interannual time scales
- Provides Process information
- Cons
- Nighttime biases
- Small footprint (< 1 km)
- Not applicable in Complex
 Terrain
- Network of Towers is Discrete in Space

Biomass and Soil Surveys

Remedy

C isotope studies More root and below ground measurements

• Pros

 A direct measure of plant growth and soil C sequestration

• Cons

- High spatial variability
- Below-ground NPP is rarely measured
- No mechanistic information on C fluxes
- Takes several years to resolve significant differences

Eddy Covariance Technique

 $F = \rho W s \sim \rho_a \cdot W' s' \qquad s = (\frac{\rho_c}{\rho_a})$

Objectives

- Network Background
- Time
 - Daily and Annual Integration
 - Seasonal Dynamics
 - Inter-Annual Variability
 - Disturbance/Chronosequence
- Processes
 - Photosynthesis = f(Q,T,functional type)
 - Respiration = $f(T, growth, ppt, \theta)$
- Space
- Other Uses and Application
 - Ecosystem Modeling

FLUXNET: From Sea to Shining Sea 400+ Sites, *circa* 2007

FLUXNET 2007

Flux Networks

Chinese Terrestrial Ecosystem Flux Research Network ChinaFLUX Sitemap | Contact Us

Growth of Fluxnet 466 Towers as of March 30, 2007

Network Representativeness

Sundareshwar et al, 2007 Science

Distribution of Flux Towers by Landcover (MOD12Q1)

Black - 466 Flux Towers Red - Land Area March 2007

Percent

Landcover codes: C-shrubland - closed shrubland DBL - deciduous broadleaf DNL - deciduous needeleaf EBL - evergreen broadleaf, ENL - evergreen needleleaf O-shrubland - open shrubland

Global distribution of Flux Towers with Respect to Climate

114 Running et al.

Institutional Memory: Evolution of FLUXNET

Measure Annual Cycle of NEE

•

•

•

•

•

Micromet issues of Detrending, Transfer Functions, Flux Sampling and Measurements, Gap-filling, Error Assessment Measure and Interpret Intra-annual Variation of NEE Flux partitioning (GPP & R_{eco}); assessment of metadata,e.g. V_{cmax} , soil respiration, LAI, biomass inventories. Quantifying Biophysical Controls on Fluxes Measure and Interpret Inter-annual variations of NEE Measure NEE over multiple Land-Use Classes crops, grasslands, deciduous and evergreen broadleaf and conifer forests Disturbance, logging, biodiversity and fire **Manipulative Studies** Nitrogen and H₂O additions Measure NEE over Representative Areas Scaling Flux Information of Footprint to MODIS pixel

- Workshops
 - LaThuile
 Italy,
 1995
 - Flathead
 Lake MT,
 1997
 - Marconi CA, 2000
 - Orvieto Italy, 2002
 - Lake
 Tahoe
 CA, 2003
 - Firenze
 Italy,
 2004
 - LaThuile, 2007

FLUXNET Successes

- 'Mountains' of data from a spectrum of canopy roughness and stability conditions, functional types and climate spaces have been collected
- A Model for Data Sharing
 - FLUXNET Web Site, a venue for distributing Primary, Value-added and Meta-Data products
- Value-Added Products have been produced
 - Development of Gap-Filling Techniques
 - Production of Gap-Filled Daily and Annual Sums
- Many New Findings on Emergent Processes, Environmental Controls and Seasonality and Annual C fluxes
- Data for Validating and Improving SVAT models used for weather, climate, biogeochemistry and ecosystem dynamics
- Collaboration & Synthesis through Workshops and Hosting Visitors
 - Building a Collaborative, Cooperative, Multi-Disciplinary & International Community of Researchers
- Training New and Next Generation of Scientists, Postdocs, Students

LaThuile Fluxnet Workshop, Feb. 2007

- New Gap-Filled, Qa/Qc Dataset
- 250 Sites; 930 Site-years of Data
- www.fluxdata.org

'Failures'/'Un-resolved' Issues

Temporal Dynamics of C Fluxes

- Hour
- Day
- Month
- Season
- Year
- Multiple Years

- Pulses
- Lags
- Switches

Annual Time Series of Trace Gas Exchange

Xu and Baldocchi, AgForMet, 2004

Complicating Dynamical Factors

- Switches
 - Phenology
 - Drought
 - Frost/Freeze
- Pulses
 - Rain
 - Litterfall
- Emergent Processes
 - Diffuse Light/LUE
- Acclimation
- Lags
- Stand Age/Disturbance

Probability Distribution of Published NEE Measurements, Integrated Annually

Baldocchi, Austral J Botany, in press

FLUXNET Database: n ~ 300 in 2003; n ~ 430 in 2005

Does Net Ecosystem Carbon Exchange Scale with Photosynthesis?

Ecosystems with greatest GPP don't necessarily experience greatest NEE

Ecosystem Respiration Scales Tightly with Ecosystem Photosynthesis, But Is with Offset by Disturbance

Baldocchi, Austral J Botany, in press

Net Ecosystem Carbon Exchange Scales with Length of Growing Season

Data of Wofsy, Munger, Goulden, et al.

Interannual Variation and Long Term Trends in Net Ecosystem Carbon Exchange (F_N), Photosynthesis (F_A) and Respiration (F_R)

Power Spectrum of CO₂ Fluxes

n, cycles per hour

New developments allow application of SSA to fragmented time series

Mahecha et al. (2007) *Biogeosciences*, 4, 743-758

Interannual Variations in Photosynthesis and Respiration are Coupled

Interannual Variability in F_N

Baldocchi, Austral J Botany, in press

Lag Effects Due to 2003 European Drought/Heat Stress

Emerging Processes

Light and Photosynthesis: Emergent Processes at Leaf and Canopy Scales

•We are poised to see effects of Cleaner/Dirtier Skies and Next Volcano

FLUXNET 2007 Database

E. Falge et al 2002 AgForMet; Baldocchi et al 2001 BAMS

Linking Water and Carbon: Potential to assess G_c with Remote Sensing

Xu + DDB, 2003 AgForMet

Gc Scale Invariance? Task to Expand with New Database

Environmental Controls on Respiration

Xu + Baldocchi, AgForMet 2004

Quantifying the impact of rain pulses on respiration

Xu, Baldocchi, Tang, 2004 Global Biogeochem Cycles

Soil Respiration Lags Photosynthesis on Hourly Scale

Soil Temperature: An Objective Indicator of Phenology??

Data of Pilegaard et al.

Soil Temperature: An Objective Measure of Phenology, part 2

Spatial Variations in C Fluxes

Spatialize Phenology with Transformation Using Climate Map

Flux Based Phenology Patterns with Match well with data from Phenology Network

White, Baldocchi and Schwartz, unpublished

Do Snap-Shot C Fluxes, inferred from Remote Sensing, Relate to Daily C Flux Integrals?

Sims et al 2005 AgForMet

MODIS GPP Algorithm Test

Heinsch et al. 2006 RSE

Upscaling Tower Measurements with Neural Network Model and Remote Sensing

What are Pros and Cons?

Papale and Valentini, 2003 GCB

Limits to Landscape Classification by Functional Type

- Stand Age/Disturbance
- Biodiversity
- Fire
- Logging
- Insects/Pathogens
- Management/Plantations
- Kyoto Forests

Time Since Disturbance Affects Net Ecosystem Carbon Exchange

Conifer Forests, Canada and Pacific Northwest

Baldocchi, Austral J Botany, in press

Data of teams lead by Amiro, Dunn, Paw U, Goulden

Effects of Stand Age: After Logging

Law et al. 2003 Global Change Biology

Northern Manitoba: Black Spruce chronosequence (Goulden et al.)

Other Activities and Uses of Fluxnet Data

- Ecosystem Modeling
- EcoHydrology
- Biodiversity
- Climate

Ecosystem Model Testing and Development

ECOLOGICAL MODELLING 196 (2006) 1-31

Kucharik et al., 2006 Ecol Modeling

Net ecosystem exchange of CO2 (NEE) predicted by different terrestrial biosphere models compares favourably with FLUXNET observations at diurnal and seasonal timescales.

Friend et al 2007, GCB

Seasonality of Photosynthetic Capacity

Wang et al, 2007 GCB

Wang et al, 2007 GCB

Biodiversity and Evaporation

Baldocchi, 2004: Data from Black, Schmid, Wofsy, Baldocchi, Fuentes

Testbed for Ecohydrological Theory

Miller et al, Adv. Water Research, 2007

Energy Flux Biogeography

FLUXNET database

Mean Soil Temperature Scales with Mean Air Temperature

FLUXNET Database

Current and Future Scientific Directions

- NEE in Urban and Suburban, Africa, India, Latin America and High Arctic Environments
- Quantifying and Understanding the controls on Interannual Variability of C and energy Fluxes
- Monitoring the Metabolism of Ecosystems as we undergo Global Change
- Coupling CO_2 , Trace Gas Deposition/Emission (O_3 , voc) and Methane Fluxes
- Adopting New Technology (TDL, wireless networks) to embellish flux measurements
- Couple tower data with Real-time Data Assimilation Models.
- Boundary Layer Budgets using Fluxes and High Precision CO₂ measurements
- Spectral reflectance measurements and Digital Photos across the network for phenology and dynamics of structure and function
- Spatial-Temporal Network-Scale Analysis
- Real-time Data Assimilation
- Matching Footprints of Tower and Pixels
- Model Lags, Switches and Pulses
- Using Fluxnet data to assess problems in
 - Ecology, Ecohydrology, Biogeochemistry, Biogeography, Remote Sensing, Global Modeling, Biodiversity
 - Testing Maximum Entropy, Ecosystem Ecology, Biogeography and EcoHydrology Theories

FLUXNET 2007++ New Issues/Questions Raised

- Production of New, Expanded DataBase
- Use of New Software Tools to Facilitate DataBase Navigation & Exploration
- Broader representation of vegetation types and climates on NEE, GPP and $\rm R_{\rm eco}.$
- Roles of natural and human induced disturbance on C Fluxes
- Impacts of climate and ecosystem factors on inter-annual variations of carbon, water and energy fluxes.
- Use FLUXNET data to provide ground-truth information to validate and 'anchor' NPP and fpar products being produced by MODIS LAND
- Perform geostatistical analyses with the FLUXNET database to examine the scales of spatial coherence of net carbon, water and energy fluxes across landscapes, regions and continents and to quantify the 'network connectivity' among groups of sites.
- Revisit many basic tenets of bio- & micrometeorology
 - Data are being collected from a spectrum of land surface types (short grasses and crops, through open heterogeneous canopies to tall, closed forests) on flat to moderately undulating terrain over a wide range of atmospheric stability conditions
 - Intermittent Turbulence

Acknowledgements

- Data Preparation
 - Dario Papale, Markus Reichstein, Catharine Van Ingen, Deb Agarwal, Tom Boden, Bob Cook, Susan Holliday, Bruce Wilson, +++
- Networks
 - AmeriFlux, CarboEurope, AsiaFlux, ChinaFlux, Fluxnet Canada, OzFlux, +++
- Agencies
 - NSF/RCN, ILEAPS, DOE/TCP, NASA, Microsoft, ++++